Dalam kalkulus, kaidah hasil bagi adalah cara untuk menemukan turunan sebuah fungsi yang terdiri dari hasil bagi dua fungsi lain yang eksistensi turunannya sudah diketahui.

Bila fungsi yang ingin didiferensiasikan f(x) dapat ditulis sebagai

,

dan h(x)0, maka kaidah hasil bagi menyatakan bahwa turunan g(x)/h(x) dapat dihitung sebagai berikut:

Atau lebih tepatnya, untuk semua x dalam sebuah himpunan terbuka (dalam bilangan riil ini adalah selang terbuka) beranggotakan bilangan a, dengan h(a)0, dan g'(a) serta h'(a) keduanya eksis, maka f'(a) juga eksis:


Misalkan   dengan  , g dan h diferensiabel. Dari definisi turunan kita dapat menuliskan:

 

Dengan menarik keluar   dan menjumlahkan pecahan di pembilang:


 

Menambahkan suku   pada pembilang dan menyusun ulang memberikan

 

Memfaktorkan dan mengalikan   di pembilang menghasilkan:

 
 

Dari definisi turunan, limit-limit di pembilang adalah turunan. Jadi kita mendapatkan