Rumus Cauchy–Binet
Dalam matematika, khususnya aljabar linear, rumus Cauchy–Binet adalah sebuah identitas determinan untuk hasil perkalian dua matriks yang dimensinya saling transpos (sehingga hasil kalinya terdefinisi dengan baik dan berupa matriks persegi). Rumus tersebut memperumum pernyataan bahwa determinan dari hasil perkalian matriks persegi, bernilai sama dengan hasil perkalian determinan-determinannya. Rumus ini berlaku untuk matriks yang setiap elemennya berasal sebarang gelanggang komutatif. Rumus ini dinamai dari Augustin-Louis Cauchy dan Jacques Philippe Marie Binet
Pernyataan
suntingMisalkan adalah sebuah matriks dan adalah sebuah matriks . Misalkan pula menyatakan himpunan , dan menyatakan himpunan kombinasi- dari (yaitu, himpunan bagian berukuran dari ; yang banyaknya ada ). Untuk , tulis sebagai matriks yang kolomnya merupakan kolom matriks pada indeks dari , dan untuk matriks yang barisnya merupakan baris matriks pada indeks dari . Rumus Cauchy–Binet kemudian menyatakan Sebagai contoh, anggap dan , dan matriks dan matriks . Ruas kanan dari rumus Cauchy–Binet memberikan determinan
Hasilnya sama dengan nilai determinan dari , yakni .
Kasus istimewa
suntingJika , maka adalah himpunan kosong, dan rumus tersebut mengatakan bahwa (karena ruas kanannya adalah sebuah jumlah kosong). Hal tersebut benar, karena pada kasus ini, rank dari matriks berukuran maksimum bernilai , yang menyiratkan bahwa determinannya bernilai nol. Jika , yakni kasus ketika dan adalah matriks persegi, maka (sebuah himpunan singleton). Jadi, penjumlahan di ruas kanan hanya melibatkan , sehingga rumusnya menyatakan bahwa .
Untuk kasus , dan adalah matriks kosong (tetapi dengan bentuk yang berbeda jika ), begitu pula dengan hasil kalinya, . Dalam kasus ini, penjumlahan di ruas kanan hanya melibatkan sebuah suku . Rumus tersebut menyatakan , karena determinan dari matriks adalah . Untuk , berisi singleton yang berbeda dari , sehingga kedua ruas dari rumus tersebut memiliki bentuk ; yakni darab skalar dari pasangan vektor pada matriks. Nilai terkecil sehingga rumus Cauchy–Binet menghasilkan sebuah persamaan yang tidak sederhana adalah ; hal ini dibahas dalam artikel pada identitas Binet–Cauchy.
Kasus n = 3
suntingBerikut adalah bentuk dari rumus Cauchy–Binet untuk . Misalkan adalah vektor tiga dimensi,
Nilai | Rumus Cauchy–Binet |
---|---|
Dalam kasus , ruas kanan selalu sama dengan 0.
Bukti sederhana
suntingBukti sederhana berikut[1] bergantung pada dua fakta yang dapat dibuktikan dalam cara-cara yang berbeda:
- Untuk setiap , koefisien dari dalam polinomial adalah jumlah dari minor utama berukuran dari .
- Jika dan adalah sebuah matriks dan adalah sebuah matriks , maka
Sekarang, dengan membandingkan koefisien dalam persamaan , ruas kiri akan memberikan jumlah dari minor utama , sedangkan ruas kanan akan memberikan suku tetap dari . Suku tetap ini tidak lain adalah , yang rumus Cauchy–Binet nyatakan; dengan kata lain:
Bukti
suntingTerdapat beragam jenis bukti yang dapat diberikan untuk rumus Cauchy–Binet. Bukti berikut didasarkan hanya pada manipulasi formal, dan menghindari dengan menggunakan pandangan khusus dari determinan, selain yang didefinisikan oleh rumus Leibniz. Bukti ini hanya menggunakan sifat multilinearitas pada baris dan kolom, dan sifat alternating mereka (bernilai nol jika ada baris atau kolom yang sama). Sifat perkalian determinan untuk matriks persegi tidak digunakan, tetapi dianggap sudah dibuktikan (untuk kasus ). Bukti ini sah untuk sebarang gelanggang koefisien komutatif.
Rumus Cauchy–Binet dapat dibuktikan dalam dua langkah:
- Menggunakan fakta bahwa kedua ruas adalah multilinear (lebih tepatnya linear ) dalam baris dan kolom , untuk mengurangi kasus tersebut bahwa setiap baris dan setiap kolom hanya memiliki satu entri tak nol, yaitu 1; dan
- Menangani kasus dengan menggunakan fungsi dengan jumlah baris dari dipetakan ke jumlah kolom dari entri yang tak nol, dan jumlah kolom dari dipetakan ke jumlah baris dari entri yang tak nol.
Pada langkah pertama, amati bahwa untuk setiap baris atau kolom , dan untuk setiap kombinasi- dari , nilai dan memang tergantung secara linear pada baris atau kolom. Akan tetapi, untuk langkah terakhir dihasilkan langsung dari sifat multinlinear dari determinan. Untuk langkah sebelumnya harus diperiksa, bahwa mengambil kombinasi linear untuk baris atau kolom tetapi meninggalkan sisa yang tidak berubah, hanya akan mempengaruhi baris dan kolom yang sesuai dari hasil kali , dan dengan kombinasi linear yang sama. Dengan demikian, seseorang dapat mengerjakan pada kedua ruas dari rumus Cauchy–Binet dengan linearitas untuk setiap baris atau kolom , dan kemudian masing-masing baris dan kolom ditulis sebagai kombinasi linear vektor basis standar. Penjumlahan rangkap tersebut memberikan hasil yang amat besar, tetapi mereka memiliki bentuk yang sama untuk kedua ruas: bentuk korespondensi melibatkan faktor skalar yang sama (masing-masing merupakan hasil kali entri dari dan ), dan bentuk-bentuk tersebut hanya dibedakan dengan melibatkan dua ekspresi lain dalam matriks konstan yang dijelaskan sebelumnya, dengan ekspresi tersebut harus sama menurut rumus Cauchy–Binet. Langkah ini memperoleh pengurangan langkah pertama
Secara konkret, banyak penjumlahan dapat dikelompokkan menjadi dua penjumlahan. Salah satu dari dua penjumlahan atas semua fungsi dengan masing-masing indeks baris memberikan indeks kolom yang sesuai, dan salah satunya lagi atas semua fungsi dengan masing-masing indeks kolom memberikan indeks baris yang sesuai. Matriks yang terkait dengan dan ditulis sebagai dengan " " menyatakan delta Kronecker. Bukti rumus Cauchy–Binet di atas telah ditulis ulang sebagai dengan menyatakan faktor skalar . Akan tetapi, rumus Cauchy–Binet masih diperlukan bukti untuk dan , untuk semua .
Pada langkah kedua, jika gagal injektif, maka dan akan memiliki dua baris identik, dan jika gagal injektif, maka dan akan memiliki dua kolom identik. Pada kasus tersebut, kedua ruas dari identitas akan bernilai nol. Sekarang, ketika memisalkan bahwa dan injekif yang memetakan , maka faktor pada ruas kanan akan bernilai nol, kecuali , sedangkan faktor akan bernilai nol, kecuali . Jika bayangan dan berbeda, maka ruas kanan hanya akan memiliki bentuk null, dan ruas kiri akan bernilai nol juga. Hal ini dikarenakan memiliki baris null (untuk dengan ). Dalam kasus untuk bayangan dan sama, katakan , harus dibuktikan bahwa Misalkan menyatakan satu buah fungsi yang bijeksi menaik , dan misalkan pula adalah permutasi sehingga dan . Maka adalah matriks permutasi untuk , adalah matriks permutasi untuk , dan adalah matriks permutasi untuk , dan karena determinan dari suatu matriks permutasi sama dengan signature dari permutasi, maka identitas tersebut dapat disimpulkan bahwa signature bersifat multiplikatif (perkalian).
Menggunakan multi-linearitas terhadap baris dan kolom dalam sebuah bukti tidak diperlukan. Seseorang cukup dapat menggunakan salah satu langkah tadi, katakan langkah sebelumnya, dan menggunakan hasil kali matriks yang terdiri dari sebuah permutasi dari baris (jika injektif), atau memiliki setidaknya dua baris yang sama.
Kaitannya dengan delta Kronecker yang diperumum
suntingSeperti yang dilihat sebelumnya, rumus Cauchy–Binet ekuivalen dengan rumus: dengan dan . Ketika ditulis dalam bentuk delta Kronecker yang diperumum, rumus tersebut dapat diturunkan sehingga ekuivalen dengan rumus Cauchy–Binet:
Dalam pandangan geometrik
suntingJika adalah sebuah matriks real, maka sama dengan kuadrat dari volume dimensi- dari balok jajar genjang yang rentang di oleh baris dari . Rumus Binet menyatakan bahwa determinannya sama dengan jumlah kuadrat dari volume yang muncul jika balok jajar genjang yang diproyeksikan secara ortogonal ke bidang koordinat dimensi- (yang terdapat ).
Dalam kasus , paralelotop direduksi menjadi sebuah vektor tunggal, serta volumenya sama dengan panjangnya. Pernyataan sebelumnya mengatakan bahwa kuadrat dari panjang sebuah vektor adalah jumlah dari koordinatnya yang dikuadratkan. Pernyataan tersebut merupakan kasus berdasarkan definisi dari panjang tersebut, yang didasari pada teorema Pythagoras.
Perumuman
suntingRumus Cauchy–Binet dapat diperluas dalam sebuah cara yang mudah ke sebuah rumus yang umum untuk minor dari hasil kali dua matriks. Konteks untuk rumus diberikan dalam artikel tentang minor, tetapi ada gagasan yang mengatakan bahwa kedua rumus tersebut untuk perkalian matriks biasa dan rumus Cauchy–Binet untuk determinan dari hasil kali dua matriks merupakan kasus istimewa dari pernyataan umum berikut tentang minor dari sebuah hasi kali dua matriks. Dengan memisalkan adalah sebuah matriks , adalah sebuah matriks , adalah himpunan bagian dengan anggota dan adalah himpunan bagian dengan anggota. Maka
dengan jumlah tersebut memperluas semua himpunan bagian dari dengan
Versi kontinu
suntingTerdapat sebuah versi kontinu dari rumus Cauchy–Binet, atau dikenal sebagai identitas Andréief–Heine atau identitas Andréief. Secara umum, rumus versi kontinu ini ditemukan dalam teori matriks acak.[2] Rumus ini mengatakan sebagai berikut: misal dan adalah dua barisan fungsi terintegralkan, yang terdukung di . Maka
Forrester menjelaskan cara mengembalikan ke rumus Cauchy–Binet biasa sebagai diskretisasi dari identitas di atas.[3]
Referensi
sunting- ^ Tao, Terence. Topics in random matrix theory (PDF). Los Angeles: Department of Mathematics, UCLA. hlm. 253.
- ^ Mehta, M.L. (2004). Random Matrices (edisi ke-3rd). Amsterdam: Elsevier/Academic Press. ISBN 0-12-088409-7.
- ^ Forrester, Peter J. (2018). "Meet Andréief, Bordeaux 1886, and Andreev, Kharkov 1882–83" (PDF). arXiv.org. arXiv.org. Diakses tanggal 2020-08-19.
- Joel G. Broida & S. Gill Williamson (1989) A Comprehensive Introduction to Linear Algebra, §4.6 Cauchy-Binet theorem, pp 208–14, Addison-Wesley ISBN 0-201-50065-5.
- Jin Ho Kwak & Sungpyo Hong (2004) Linear Algebra 2nd edition, Example 2.15 Binet-Cauchy formula, pp 66,7, Birkhäuser ISBN 0-8176-4294-3.
- I. R. Shafarevich & A. O. Remizov (2012) Linear Algebra and Geometry, §2.9 (hal. 68) & §10.5 (hal. 377), Springer ISBN 978-3-642-30993-9.
- M.L. Mehta (2004) Random matrices, 3erd ed., Elsevier ISBN 9780120884094
Pranala luar
sunting- Aaron Lauve (2004) A short combinatoric proof of Cauchy–Binet formula Diarsipkan 2019-03-04 di Wayback Machine. from Université du Québec à Montréal.
- Peter J. Forrester (2018) Meet Andréief, Bordeaux 1886, and Andreev, Kharkov 1882–83