Paradoks Banach–Tarski
(Dialihkan dari Paradoks kacang dan Matahari)
Paradoks Banach–Tarski adalah sebuah teorema geometri teori himpunan, yang dinyatakan sebagai berikut: Sebuah bola padat ditempatkan di ruang 3 dimensi, bola tersebut kemudian dipecah berkeping-keping dan disatukan kembali menjadi dua bola dengan ukuran yang sama dengan bola yang asli. Rekonstruksi dapat dilakukan dengan setidaknya lima kepingan.
Paradoks tersebut sering kali dinyatakan sebagai "sebuah kacang yang dapat dipecah dan disatukan kembali menjadi Matahari" dan disebut "paradoks kacang dan Matahari".
Referensi
sunting- Banach, Stefan; Tarski, Alfred (1924). Review at JFM. "Sur la décomposition des ensembles de points en parties respectivement congruentes" (PDF). Fundamenta Mathematicae. 6: 244–277.
- Churkin, V. A. (2010). "A continuous version of the Hausdorff–Banach–Tarski paradox". Algebra and Logic. 49 (1): 91–98. doi:10.1007/s10469-010-9080-y.
- Edward Kasner & James Newman (1940) Mathematics and the Imagination, pp 205–7, Simon & Schuster.
- Stromberg, Karl (March 1979). "The Banach–Tarski paradox". The American Mathematical Monthly. Mathematical Association of America. 86 (3): 151–161. doi:10.2307/2321514. JSTOR 2321514.
- Su, Francis E. "The Banach–Tarski Paradox" (PDF). Diarsipkan dari versi asli (PDF) tanggal 2006-06-02. Diakses tanggal 2019-10-07.
- von Neumann, John (1929). "Zur allgemeinen Theorie des Masses" (PDF). Fundamenta Mathematicae. 13: 73–116.
- Wagon, Stan (1994). The Banach–Tarski Paradox. Cambridge: Cambridge University Press. ISBN 0-521-45704-1.
- Wapner, Leonard M. (2005). The Pea and the Sun: A Mathematical Paradox. Wellesley, Massachusetts: A.K. Peters. ISBN 1-56881-213-2.
- Tomkowicz, Grzegorz; Wagon, Stan (2016). The Banach–Tarski Paradox 2nd Edition. Cambridge: Cambridge University Press. ISBN 9781107042599.
Pranala luar
sunting- Paradoks Banach–Tarski di ProofWiki
Wikimedia Commons memiliki media mengenai Banach-Tarski paradox.
- The Banach-Tarski Paradox by Stan Wagon (Macalester College), the Wolfram Demonstrations Project.
- Irregular Webcomic! #2339 by David Morgan-Mar provides a non-technical explanation of the paradox. It includes a step-by-step demonstration of how to create two spheres from one.
- Vsauce. "The Banach–Tarski Paradox" – via YouTube gives an overview on the fundamental basics of the paradox.