Propulsi wahana antariksa

metode untuk mempercepat wahana antariksa
(Dialihkan dari Propulsi roket)

Propulsi wahana antariksa digunakan untuk mengubah kecepatan wahana antariksa dan satelit buatan, atau singkatnya, untuk menyediakan delta-v. Ada beberapa metode. Setiap metode memiliki kekurangan dan kelebihan tersendiri, dan propulsi wahana antariksa adalah bidang riset yang aktif. Banyak wahana antariksa sekarang ini didorong oleh pemanasan reaksi massa dan mebuatnya mengalir dari belakang kendaraan. Mesin semacam ini disebut mesin roket.

Kamera jauh menangkap gambar close-up dari mesin utama pesawat ulang alik pada tes pembakaran di John C. Stennis Space Center di Propinsi Hancock, Mississippi

Pesawat angkasa sekarang ini seluruhnya menggunakan mesin roket kimiawi (roket bipropelan) atau roket padat untuk peluncuran, meskipun beberapa (seperti roket Pegasus dan SpaceShipOne) telah menggunakan mesin penghisap-udara dalam roket multitingkatannya. Banyak satelit memiliki roket sederhana tepercaya (sering kali roket monopropelan) atau roket resistojet untuk menjaga stasiunnya, meskipun beberapa menggunakan roda momentum untuk pengontrol ketinggian. Pesawat geo-orbit baru mulai menggunakan pendorong listrik untuk penjagaan stasiun utara-selatan. Kendaraan antar planet kebanyakan menggunakan roket kimiawi dan juga, beberapa menggunakan pendorong ion dengan beberapa kesuksesan (sejenis pendorong listrik).[1][2][3]

Produsen propulsi

sunting
Nama perusahaan Negara Mesin Jenis mesin Komentar
Dawn Aerospace Netherlands B20, B1, SatDrive, Cubedrive Bi-Propellant, Cold Gass Nitrous Oxide based, turnkey propulsion systems
ArianeGroup Lampoldshausen, Germany S10, S20, S200, S400

CHT-1N, CHT-20N, CHT-400N

RIT-10, RIT-2x

propellant and Monopropellant Thrusters, Gridded Ion Thrusters Main manufacturer for Propulsion Systems, Equipments and Services in Europe, serving major space projects like ATV, ORION-ESM, ExoMars, JUICE, MTG, GEO and EO satellites with Propulsion Solutions.
Comat Flourens, France Plasma Jet Pack Vacuum Arc thruster ; Modular installation (PPSU + Nozzles) To be used on @Isispace and @U-space platforms for French and European missions.

Modular Thruster with up to 4 nozzles per PPSCU.

AB 360 Space Washington DC, United States CLEPS X-100, CLEPS C100 hybrid Thrusters, Combined Liquid Electric Propulsion Systems, Methane/ Oxygen Ion Thrusters Uses Electric and Liquid Propulsion simultaneously for space propulsion for LEO/MEOsatellites[4]
Moog-ISP (In Space Propulsion) Westcott, Buckinghamshire United Kingdom

Niagara Falls, NY United States

All Forms of Chemical Propulsion including Main Apogee Engines and AOCS Thrusters Bipropellant and Monopropellant Product Families Include: LEROS, MONARC Thruster, LTT Thruster Division of Moog Inc.
Bradford Space New York, NY LMP-103s thrusters,

Water based thrusters

LMP-103s green monopropellant propulsion systems & thrusters,

COMET water based propulsion systems

>100 thrusters on flight satellites
Busek Natick, Massachusetts United States BHT-200, BHT-1500, BHT-20k, BET-1, BmP-220, BIT-1, BIT-3, BIT-7, uPPT-3 Hall-effect thruster, Gridded Ion, Electrospray, micro Pulsed Plasma, Green Monopropellant, Electrothermal, Hollow Cathodes, Field Emission Cathode TacSat-2, FalconSat-5, FalconSat-6, ST-7/LISA Pathfinder. Licensed technology for BPT-4000 aboard AEHF 1, AEHF 2, AEHF 3. Propulsion options ranging from CubeSats to GEO Communications Satellites to Asteroid Redirect Mission Spacecraft.[5]
Aerojet Rocketdyne Rancho Cordova, California United States Numerous liquid rocket engine, Solid rocket engine, Hall-effect thruster, Gridded Ion thruster.
Hanwha Aerospace South Korea KRE-075, KRE-007 and Monopropellant Thrusters Bipropellant, Monopropellant and Motor Hanwha aerospace manufacturing liquid rocket engine for KSLV-II and monopropellant enginesd spacecraft (Lunar Orbiter, KOMPSAT series, etc.). The engines are co-developed with KARI.
American Rocket Company United States hybrid rocket intellectual property acquired by SpaceDev
CU Aerospace Champaign, IL United States PUC, CHIPS, PPT-11 MCD[6] / Resistojet / PPT[7] Small satellite / CubeSat Propulsion Modules[8]
VIPER liquid rocket engine reusable rocket engine[9]
Ad Astra Rocket Company Webster, TX United States VASIMR magnetoplasma may be used for future Mars missions
Enpulsion GmbH Wiener Neustadt, Austria Propulsion Systems for Cubesats, Small Sats, and Medium/Large Satellites Field Emission Electric Propulsion Enpulsion is commercializing a technology that has been developed for ESA science missions for more than 10 years.[10]
PLD Space Spain TREPEL family used on Miura Rockets
Reaction Engines Ltd. Oxfordshire, England United Kingdom SABRE combined cycle precooled jet engine and closed cycle rocket engine planned to be used in Skylon
LIA Aerospace Ltd. England United Kingdom KX11 Pressure Fed, bipropellant, green, non-toxic, storable regen cooled used in Zonda 1.0
Sierra Space United States VR35K-A[11] hybrid rocket, liquid rocket engine[12] Commercial space subsidiary of Sierra Nevada Corporation
SpaceDev Poway, CA United States hybrid rocket acquired by Sierra Space; used on SpaceShipOne and SpaceShipTwo
SpaceX Hawthorne, California, United States Merlin / Raptor / Draco / Kestrel liquid rocket engine used on SpaceX rockets and spacecraft (Falcon, Starship, Dragon)
ArianeGroup Vernon, France Vinci / Viking / Vulcain / HM7B liquid rocket engine used on Ariane rockets
NPO Energomash Russia liquid rocket engine used on R-7, Molniya, Soyuz, Energia, Zenit, Atlas III, Atlas V, Angara, Antares
KBKhA Russia liquid rocket engine used on Soyuz, Proton, Energia
KBKhM Russia liquid rocket engine used on Vostok, Voskhod, Zenit, Soyuz, Progress, Salyut 1, Salyut 4, Salyut 6, Salyut 7, Mir Core Module, Zvezda, GSLV Mk I
NIIMash Russia liquid rocket engine used on Almaz, Buran, Briz-M
TsNIIMash Russia used on STEX
Kuznetsov Design Bureau Russia liquid rocket engine used on N1, Soyuz-2-1v, Antares
OKB Fakel Russia Hall-effect thruster used on SMART-1, LS-1300
Proton-PM Russia liquid rocket engine used on Proton, Angara
Keldysh Research Center Russia
Voronezh Mechanical Plant Russia liquid rocket engine used on Vostok, Voskhod, Molniya, Soyuz, Proton, Energia, Luna
Yuzhnoye Design Office / Yuzhmash Ukraine used on
Independence-X Aerospace Malaysia ID-1, ID-2, ID-3 and unnamed 2-stage rocket engine for DNLV solid rocket motor and liquid rocket engine used on ID-1, ID-2 and DNLV rocket
Borneo SubOrbitals Malaysia hybrid rocket used on yet-to-be-named rocket
Apollo Fusion United States ACE, ACE Max Hall-effect thruster To be used on Spaceflight, Inc.'s Sherpa-LTE space tug[13]
Benchmark Space Systems United States Starling, Halcyon, Peregrine Warm gas thruster, High-test peroxide thruster, Hypergolic thruster To be used on Spaceflight, Inc.'s Sherpa-LTC space tug[13]
ThrustMe France NPT30, I2T5 Gridded ion thruster,[14][15] Cold gas thruster[16] first in-orbit demonstration of an electric propulsion system powered by iodine[17][18]

Lihat pula

sunting

Referensi

sunting
  1. ^ Meyer, Mike (April 2012). "In-space propulsion systems roadmap" (PDF). nasa.gov. hlm. 9. Diarsipkan dari versi asli (PDF) tanggal October 9, 2022. Diakses tanggal Feb 1, 2021. 
  2. ^ Mason, Lee S. "A practical approach to starting fission surface power development." proceedings of International Congress on Advances in Nuclear Power Plants (ICAPP'06), American Nuclear Society, La Grange Park, Illinois, 2006b, paper. Vol. 6297. 2006.
  3. ^ Leone, Dan (May 20, 2013). "NASA Banking on Solar Electric Propulsion's Slow but Steady Push". Space News. SpaceNews, Inc. Diarsipkan dari versi asli tanggal July 20, 2013. Diakses tanggal February 1, 2021. 
  4. ^ "SpaceNews August 2021 Newsletter" (PDF). Diarsipkan dari versi asli tanggal 7 May 2023. Diakses tanggal 24 August 2021. 
  5. ^ "Busek Home Page". Busek.com. Diakses tanggal 11 August 2017. 
  6. ^ Chadenedes, Mark de; Ahern, Drew; Cho, Jin-Hoon; Park, Sung-Jin; Eden, J.; Burton, Rodney; Yoon, Je Kwon; Garrett, Stephen; Sitaraman, Hariswaran; Raja, Laxminarayan; Laystrom-Woodard, Julia; Carroll, David; Benavides, Gabriel (2010). "Advances in Microcavity Discharge Thruster Technology". 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2010-6616. ISBN 978-1-60086-958-7. Diakses tanggal 11 August 2017. 
  7. ^ Laystrom, Julia; Burton, Rodney; Benavides, Gabriel (2003). Geometric Optimization of a Coaxial Pulsed Plasma Thruster. Arc.aiaa.org. doi:10.2514/6.2003-5025. ISBN 978-1-62410-098-7. Diakses tanggal 11 August 2017. 
  8. ^ "CU Aerospace – Small-Satellite Propulsion". 10 August 2014. Diarsipkan dari versi asli tanggal 10 August 2014. Diakses tanggal 11 August 2017. 
  9. ^ "A Rocket Engine for the Masses". 18 March 2019. 
  10. ^ "Austrian startup ramping to mass produce tricky electric propulsion thrusters". 26 October 2017. 
  11. ^ "VORTEX® Upper Stage Engine Achieves Critical Design Milestone". sncorp.com. Sierra Nevada Corporation. 4 August 2022. Diakses tanggal 5 November 2022. 
  12. ^ "Rocket Engines and Propulsion". sierraspace.com. Sierra Space. Diakses tanggal 5 November 2022. 
  13. ^ a b "Spaceflight announces Sherpa tug with electric propulsion". 12 November 2020. 
  14. ^ Werner, Debra (6 November 2020). "Spacety launches satellite to test ThrustMe iodine electric propulsion and constellation technologies". Space News. Diakses tanggal 1 September 2021. 
  15. ^ "French startup demonstrates iodine propulsion in potential boost for space debris mitigation efforts". Spacenews. 2020-03-25. Diakses tanggal 2021-07-26. 
  16. ^ "Iodine Impulse for Smallsats Demo'd On-Orbit by ThrustMe and Spacety". Smallsat News. 2019-11-25. Diakses tanggal 2021-07-26. 
  17. ^ "Iodine thruster could slow space junk accumulation". esa.int. 2021-01-22. Diakses tanggal 2021-07-26. 
  18. ^ Rafalskyi, Dmytro; Martínez, Javier Martínez; Habl, Lui; Zorzoli Rossi, Elena; Proynov, Plamen; Boré, Antoine; Baret, Thomas; Poyet, Antoine; Lafleur, Trevor; Dudin, Stanislav; Aanesland, Ane (2021). "In-orbit demonstration of an iodine electric propulsion system". Nature. 599 (7885): 411–415. Bibcode:2021Natur.599..411R. doi:10.1038/s41586-021-04015-y. PMC 8599014  Periksa nilai |pmc= (bantuan). PMID 34789903 Periksa nilai |pmid= (bantuan).