Propulsi wahana antariksa
Propulsi wahana antariksa digunakan untuk mengubah kecepatan wahana antariksa dan satelit buatan, atau singkatnya, untuk menyediakan delta-v. Ada beberapa metode. Setiap metode memiliki kekurangan dan kelebihan tersendiri, dan propulsi wahana antariksa adalah bidang riset yang aktif. Banyak wahana antariksa sekarang ini didorong oleh pemanasan reaksi massa dan mebuatnya mengalir dari belakang kendaraan. Mesin semacam ini disebut mesin roket.
Pesawat angkasa sekarang ini seluruhnya menggunakan mesin roket kimiawi (roket bipropelan) atau roket padat untuk peluncuran, meskipun beberapa (seperti roket Pegasus dan SpaceShipOne) telah menggunakan mesin penghisap-udara dalam roket multitingkatannya. Banyak satelit memiliki roket sederhana tepercaya (sering kali roket monopropelan) atau roket resistojet untuk menjaga stasiunnya, meskipun beberapa menggunakan roda momentum untuk pengontrol ketinggian. Pesawat geo-orbit baru mulai menggunakan pendorong listrik untuk penjagaan stasiun utara-selatan. Kendaraan antar planet kebanyakan menggunakan roket kimiawi dan juga, beberapa menggunakan pendorong ion dengan beberapa kesuksesan (sejenis pendorong listrik).[1][2][3]
Produsen propulsi
suntingNama perusahaan | Negara | Mesin | Jenis mesin | Komentar |
---|---|---|---|---|
Dawn Aerospace | Netherlands | B20, B1, SatDrive, Cubedrive | Bi-Propellant, Cold Gass | Nitrous Oxide based, turnkey propulsion systems |
ArianeGroup | Lampoldshausen, Germany | S10, S20, S200, S400
CHT-1N, CHT-20N, CHT-400N RIT-10, RIT-2x |
propellant and Monopropellant Thrusters, Gridded Ion Thrusters | Main manufacturer for Propulsion Systems, Equipments and Services in Europe, serving major space projects like ATV, ORION-ESM, ExoMars, JUICE, MTG, GEO and EO satellites with Propulsion Solutions. |
Comat | Flourens, France | Plasma Jet Pack | Vacuum Arc thruster ; Modular installation (PPSU + Nozzles) | To be used on @Isispace and @U-space platforms for French and European missions.
Modular Thruster with up to 4 nozzles per PPSCU. |
AB 360 Space | Washington DC, United States | CLEPS X-100, CLEPS C100 | hybrid Thrusters, Combined Liquid Electric Propulsion Systems, Methane/ Oxygen Ion Thrusters | Uses Electric and Liquid Propulsion simultaneously for space propulsion for LEO/MEOsatellites[4] |
Moog-ISP (In Space Propulsion) | Westcott, Buckinghamshire United Kingdom
Niagara Falls, NY United States |
All Forms of Chemical Propulsion including Main Apogee Engines and AOCS Thrusters | Bipropellant and Monopropellant Product Families Include: LEROS, MONARC Thruster, LTT Thruster | Division of Moog Inc. |
Bradford Space | New York, NY | LMP-103s thrusters,
Water based thrusters |
LMP-103s green monopropellant propulsion systems & thrusters,
COMET water based propulsion systems |
>100 thrusters on flight satellites |
Busek | Natick, Massachusetts United States | BHT-200, BHT-1500, BHT-20k, BET-1, BmP-220, BIT-1, BIT-3, BIT-7, uPPT-3 | Hall-effect thruster, Gridded Ion, Electrospray, micro Pulsed Plasma, Green Monopropellant, Electrothermal, Hollow Cathodes, Field Emission Cathode | TacSat-2, FalconSat-5, FalconSat-6, ST-7/LISA Pathfinder. Licensed technology for BPT-4000 aboard AEHF 1, AEHF 2, AEHF 3. Propulsion options ranging from CubeSats to GEO Communications Satellites to Asteroid Redirect Mission Spacecraft.[5] |
Aerojet Rocketdyne | Rancho Cordova, California United States | Numerous | liquid rocket engine, Solid rocket engine, Hall-effect thruster, Gridded Ion thruster. | |
Hanwha Aerospace | South Korea | KRE-075, KRE-007 and Monopropellant Thrusters | Bipropellant, Monopropellant and Motor | Hanwha aerospace manufacturing liquid rocket engine for KSLV-II and monopropellant enginesd spacecraft (Lunar Orbiter, KOMPSAT series, etc.). The engines are co-developed with KARI. |
American Rocket Company | United States | hybrid rocket | intellectual property acquired by SpaceDev | |
CU Aerospace | Champaign, IL United States | PUC, CHIPS, PPT-11 | MCD[6] / Resistojet / PPT[7] | Small satellite / CubeSat Propulsion Modules[8] |
VIPER | liquid rocket engine | reusable rocket engine[9] | ||
Ad Astra Rocket Company | Webster, TX United States | VASIMR | magnetoplasma | may be used for future Mars missions |
Enpulsion GmbH | Wiener Neustadt, Austria | Propulsion Systems for Cubesats, Small Sats, and Medium/Large Satellites | Field Emission Electric Propulsion | Enpulsion is commercializing a technology that has been developed for ESA science missions for more than 10 years.[10] |
PLD Space | Spain | TREPEL family | used on Miura Rockets | |
Reaction Engines Ltd. | Oxfordshire, England United Kingdom | SABRE | combined cycle precooled jet engine and closed cycle rocket engine | planned to be used in Skylon |
LIA Aerospace Ltd. | England United Kingdom | KX11 | Pressure Fed, bipropellant, green, non-toxic, storable regen cooled | used in Zonda 1.0 |
Sierra Space | United States | VR35K-A[11] | hybrid rocket, liquid rocket engine[12] | Commercial space subsidiary of Sierra Nevada Corporation |
SpaceDev | Poway, CA United States | hybrid rocket | acquired by Sierra Space; used on SpaceShipOne and SpaceShipTwo | |
SpaceX | Hawthorne, California, United States | Merlin / Raptor / Draco / Kestrel | liquid rocket engine | used on SpaceX rockets and spacecraft (Falcon, Starship, Dragon) |
ArianeGroup | Vernon, France | Vinci / Viking / Vulcain / HM7B | liquid rocket engine | used on Ariane rockets |
NPO Energomash | Russia | liquid rocket engine | used on R-7, Molniya, Soyuz, Energia, Zenit, Atlas III, Atlas V, Angara, Antares | |
KBKhA | Russia | liquid rocket engine | used on Soyuz, Proton, Energia | |
KBKhM | Russia | liquid rocket engine | used on Vostok, Voskhod, Zenit, Soyuz, Progress, Salyut 1, Salyut 4, Salyut 6, Salyut 7, Mir Core Module, Zvezda, GSLV Mk I | |
NIIMash | Russia | liquid rocket engine | used on Almaz, Buran, Briz-M | |
TsNIIMash | Russia | used on STEX | ||
Kuznetsov Design Bureau | Russia | liquid rocket engine | used on N1, Soyuz-2-1v, Antares | |
OKB Fakel | Russia | Hall-effect thruster | used on SMART-1, LS-1300 | |
Proton-PM | Russia | liquid rocket engine | used on Proton, Angara | |
Keldysh Research Center | Russia | |||
Voronezh Mechanical Plant | Russia | liquid rocket engine | used on Vostok, Voskhod, Molniya, Soyuz, Proton, Energia, Luna | |
Yuzhnoye Design Office / Yuzhmash | Ukraine |
|
used on
| |
Independence-X Aerospace | Malaysia | ID-1, ID-2, ID-3 and unnamed 2-stage rocket engine for DNLV | solid rocket motor and liquid rocket engine | used on ID-1, ID-2 and DNLV rocket |
Borneo SubOrbitals | Malaysia | hybrid rocket | used on yet-to-be-named rocket | |
Apollo Fusion | United States | ACE, ACE Max | Hall-effect thruster | To be used on Spaceflight, Inc.'s Sherpa-LTE space tug[13] |
Benchmark Space Systems | United States | Starling, Halcyon, Peregrine | Warm gas thruster, High-test peroxide thruster, Hypergolic thruster | To be used on Spaceflight, Inc.'s Sherpa-LTC space tug[13] |
ThrustMe | France | NPT30, I2T5 | Gridded ion thruster,[14][15] Cold gas thruster[16] | first in-orbit demonstration of an electric propulsion system powered by iodine[17][18] |
Lihat pula
suntingReferensi
sunting- ^ Meyer, Mike (April 2012). "In-space propulsion systems roadmap" (PDF). nasa.gov. hlm. 9. Diarsipkan dari versi asli (PDF) tanggal October 9, 2022. Diakses tanggal Feb 1, 2021.
- ^ Mason, Lee S. "A practical approach to starting fission surface power development." proceedings of International Congress on Advances in Nuclear Power Plants (ICAPP'06), American Nuclear Society, La Grange Park, Illinois, 2006b, paper. Vol. 6297. 2006.
- ^ Leone, Dan (May 20, 2013). "NASA Banking on Solar Electric Propulsion's Slow but Steady Push". Space News. SpaceNews, Inc. Diarsipkan dari versi asli tanggal July 20, 2013. Diakses tanggal February 1, 2021.
- ^ "SpaceNews August 2021 Newsletter" (PDF). Diarsipkan dari versi asli tanggal 7 May 2023. Diakses tanggal 24 August 2021.
- ^ "Busek Home Page". Busek.com. Diakses tanggal 11 August 2017.
- ^ Chadenedes, Mark de; Ahern, Drew; Cho, Jin-Hoon; Park, Sung-Jin; Eden, J.; Burton, Rodney; Yoon, Je Kwon; Garrett, Stephen; Sitaraman, Hariswaran; Raja, Laxminarayan; Laystrom-Woodard, Julia; Carroll, David; Benavides, Gabriel (2010). "Advances in Microcavity Discharge Thruster Technology". 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2010-6616. ISBN 978-1-60086-958-7. Diakses tanggal 11 August 2017.
- ^ Laystrom, Julia; Burton, Rodney; Benavides, Gabriel (2003). Geometric Optimization of a Coaxial Pulsed Plasma Thruster. Arc.aiaa.org. doi:10.2514/6.2003-5025. ISBN 978-1-62410-098-7. Diakses tanggal 11 August 2017.
- ^ "CU Aerospace – Small-Satellite Propulsion". 10 August 2014. Diarsipkan dari versi asli tanggal 10 August 2014. Diakses tanggal 11 August 2017.
- ^ "A Rocket Engine for the Masses". 18 March 2019.
- ^ "Austrian startup ramping to mass produce tricky electric propulsion thrusters". 26 October 2017.
- ^ "VORTEX® Upper Stage Engine Achieves Critical Design Milestone". sncorp.com. Sierra Nevada Corporation. 4 August 2022. Diakses tanggal 5 November 2022.
- ^ "Rocket Engines and Propulsion". sierraspace.com. Sierra Space. Diakses tanggal 5 November 2022.
- ^ a b "Spaceflight announces Sherpa tug with electric propulsion". 12 November 2020.
- ^ Werner, Debra (6 November 2020). "Spacety launches satellite to test ThrustMe iodine electric propulsion and constellation technologies". Space News. Diakses tanggal 1 September 2021.
- ^ "French startup demonstrates iodine propulsion in potential boost for space debris mitigation efforts". Spacenews. 2020-03-25. Diakses tanggal 2021-07-26.
- ^ "Iodine Impulse for Smallsats Demo'd On-Orbit by ThrustMe and Spacety". Smallsat News. 2019-11-25. Diakses tanggal 2021-07-26.
- ^ "Iodine thruster could slow space junk accumulation". esa.int. 2021-01-22. Diakses tanggal 2021-07-26.
- ^ Rafalskyi, Dmytro; Martínez, Javier Martínez; Habl, Lui; Zorzoli Rossi, Elena; Proynov, Plamen; Boré, Antoine; Baret, Thomas; Poyet, Antoine; Lafleur, Trevor; Dudin, Stanislav; Aanesland, Ane (2021). "In-orbit demonstration of an iodine electric propulsion system". Nature. 599 (7885): 411–415. Bibcode:2021Natur.599..411R. doi:10.1038/s41586-021-04015-y. PMC 8599014 Periksa nilai
|pmc=
(bantuan). PMID 34789903 Periksa nilai|pmid=
(bantuan).
- (Inggris)NASA Beginner's Guide to Propulsion
- (Inggris)Advanced Propulsion Concepts Diarsipkan 2004-10-11 di Wayback Machine. at islandone.org
- (Inggris)NASA Breakthrough Propulsion Physics project Diarsipkan 2004-04-02 di Wayback Machine.
- (Inggris)Rocket Propulsion
- (Inggris)Journal of Advanced Theoretical Propulsion Diarsipkan 2008-02-28 di Wayback Machine.
- (Inggris)Different Rockets Diarsipkan 2010-05-29 di Wayback Machine.
- (Inggris)Spaceflight Propulsion - a detailed survey by Greg Goebel, in the public domain