Persamaan diferensial eksak

Persamaan diferensial eksak atau persamaan diferensial total adalah salah satu jenis persamaan diferensial biasa yang sering digunakan dalam ilmu fisika dan teknik.

Definisi

sunting

Dengan D=R2 dan dua fungsi I dan J yang bersifat kontinu di D, maka persamaan diferensial biasa orde pertama berikut

 

disebut persamaan diferensial eksak jika terdapat fungsi F yang dapat diturunkan secara terus menerus yang disebut fungsi potensial, sehingga

 

dan

 

Tata nama "persamaan diferensial eksak" mengacu kepada turunan eksak suatu fungsi. Untuk fungsi  , turunan eksak sehubungan dengan   adalah

 

Contoh

sunting

Fungsi   berupa

 

merupakan fungsi potensial untuk persamaan diferensial

 

Penyelesaian

sunting

Jika terdapat persamaan diferensial eksak dengan definisi D=R2 dengan fungsi potensial F, maka fungsi yang dapat diturunkan f dengan (x, f(x)) dalam D adalah penyelesaiannya jika dan hanya jika terdapat bilangan riil c sehingga

 

Untuk permasalahan nilai awal

 

Fungsi potensial dapat dicari dengan Cara

 

yang menyelesaikan

 

untuk y, di mana c adalah bilangan riil.

Referensi

sunting
  • Boyce, William E.; DiPrima, Richard C. (1986). Elementary Differential Equations (4th ed.). New York: John Wiley & Sons, Inc. ISBN 0-471-07894-8