Pernyataan pada Pertidaksamaan Cauchy-Schwarz
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini. Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala. Tag ini diberikan pada Februari 2023. |
Artikel ini sedang dalam perbaikan. Untuk menghindari konflik penyuntingan, mohon jangan melakukan penyuntingan selama pesan ini ditampilkan. Halaman ini terakhir disunting oleh Arya-Bot (Kontrib • Log) 725 hari 669 menit lalu. |
Pernyataan pada Pertidaksamaan Cauchy-Schwarz adalah vektor u dan v dalam yang berbentuk produk.
Darimana adalah bentuk produk.[1][2]
Jika dan , dan bentuk produk adalah produk kompleks standar, maka pertidaksamaan dinyatakan jauh lebih eksplisit sebagai berikut:
atau
Referensi
sunting- ^ Strang, Gilbert (19 July 2005). "3.2". Linear Algebra and its Applications (edisi ke-4th). Stamford, CT: Cengage Learning. hlm. 154–155. ISBN 978-0030105678.
- ^ Hunter, John K.; Nachtergaele, Bruno (2001). Applied Analysis. World Scientific. ISBN 981-02-4191-7.
- ^ Bachmann, George; Narici, Lawrence; Beckenstein, Edward (2012-12-06). Fourier and Wavelet Analysis. Springer Science & Business Media. hlm. 14. ISBN 9781461205050.
- ^ Hassani, Sadri (1999). Mathematical Physics: A Modern Introduction to Its Foundations. Springer. hlm. 29. ISBN 0-387-98579-4.
Equality holds iff <c|c>=0 or |c>=0. From the definition of |c>, we conclude that |a> and |b> must be proportional.
Artikel ini tidak memiliki kategori atau memiliki terlalu sedikit kategori. Bantulah dengan menambahi kategori yang sesuai. Lihat artikel yang sejenis untuk menentukan apa kategori yang sesuai. Tolong bantu Wikipedia untuk menambahkan kategori. Tag ini diberikan pada Februari 2023. |