Tektonika lempeng

Pergerakan litosfer bumi
(Dialihkan dari Lempeng tektonik)

Tektonika lempeng (bahasa Inggris: plate tectonics) adalah sebuah teori dalam bidang geologi, bahwa litosfer bumi terdiri dari sejumlah lempeng tektonik besar, yang bergerak perlahan sejak sekitar 3,4 miliar tahun yang lalu. Model ini dibangun berdasarkan konsep pergeseran benua, sebuah gagasan yang dikembangkan selama dekade pertama abad ke-20. Lempeng tektonik bergerak sangat lambat, biasanya hanya beberapa sentimeter per tahun. Pergerakan lempeng tektonik adalah penyebab utama, yang dapat mengakibatkan gempa bumi.[1]

Lempeng-lempeng tektonik di bumi barulah dipetakan pada paruh kedua abad ke-20.
Diagram lapisan dalam Bumi yang menunjukkan litosfer di atas astenosfer
Lempeng tektonik dan pergerakannya.

Ringkasnya, karena bagian terluar dari interior bumi terbentuk oleh dua lapisan. Di bagian atas terdapat litosfer yang terdiri atas kerak dan bagian teratas mantel bumi yang isinya kaku dan padat. Di bawah lapisan litosfer terdapat astenosfer yang berbentuk padat tetapi bisa mengalir seperti cairan dengan sangat lambat dan dalam skala waktu geologis yang sangat lama karena kekentalan dan kekuatan geser (shear strength) yang rendah. Lebih dalam lagi, bagian mantel di bawah astenosfer sifatnya menjadi lebih kaku lagi. Penyebabnya bukanlah suhu yang lebih dingin, melainkan tekanan yang tinggi.

Lapisan litosfer dibagi menjadi lempeng-lempeng tektonik. Di bumi, terdapat tujuh lempeng utama dan banyak lempeng-lempeng yang lebih kecil. Lempeng-lempeng litosfer ini menumpang di atas astenosfer. Mereka bergerak relatif satu dengan yang lainnya di batas-batas lempeng, baik divergen (menjauh), konvergen (bertumbukan), ataupun transform (menyamping). Gempa bumi, aktivitas vulkanik, pembentukan gunung, dan pembentukan palung samudera semuanya umumnya terjadi di daerah sepanjang batas lempeng. Pergerakan lateral lempeng lazimnya berkecepatan 50–100 mm/a.[2][3]

Perkembangan Teori

sunting
 
Peta dengan detail yang menunjukkan lempeng-lempeng tektonik dan arah vektor gerakannya.

Pada akhir abad ke-19 dan awal abad ke-20, geolog berasumsi bahwa kenampakan-kenampakan utama bumi berkedudukan tetap. Kebanyakan kenampakan geologis seperti pegunungan bisa dijelaskan dengan pergerakan vertikal kerak seperti dijelaskan dalam teori geosinklin. Sejak tahun 1596, telah diamati bahwa pantai Samudera Atlantik yang berhadap-hadapan antara benua Afrika dan Eropa dengan Amerika Utara dan Amerika Selatan memiliki kemiripan bentuk dan tampaknya pernah menjadi satu. Ketepatan ini akan semakin jelas jika kita melihat tepi-tepi dari paparan benua di sana.[4] Sejak saat itu banyak teori telah dikemukakan untuk menjelaskan hal ini, tetapi semuanya menemui jalan buntu karena asumsi bahwa bumi adalah sepenuhnya padat menyulitkan penemuan penjelasan yang sesuai.[5]

Penemuan radium dan sifat-sifat pemanasnya pada tahun 1896 mendorong pengkajian ulang umur bumi,[6] karena sebelumnya perkiraan didapatkan dari laju pendinginannya dan dengan asumsi permukaan bumi beradiasi seperti benda hitam.[7] Dari perhitungan tersebut dapat disimpulkan bahwa bahkan jika pada awalnya bumi adalah sebuah benda yang merah-pijar, suhu Bumi akan menurun menjadi seperti sekarang dalam beberapa puluh juta tahun. Dengan adanya sumber panas yang baru ditemukan ini maka para ilmuwan menganggap masuk akal bahwa Bumi sebenarnya jauh lebih tua dan intinya masih cukup panas untuk berada dalam keadaan cair.

Teori Tektonik Lempeng berasal dari Hipotesis Pergeseran Benua (continental drift) yang dikemukakan Alfred Wegener tahun 1912.[8] dan dikembangkan lagi dalam bukunya The Origin of Continents and Oceans yang diterbitkan pada tahun 1915. Ia mengemukakan bahwa benua-benua yang sekarang ada dulu adalah satu kesatuan yang bergerak menjauh sehingga melepaskan benua-benua tersebut dari inti bumi seperti 'bongkahan es' dari granit yang bermassa jenis rendah yang mengambang di atas lautan basal yang lebih padat.[9][10] Namun, tanpa adanya bukti terperinci dan perhitungan gaya-gaya yang dilibatkan, teori ini dipinggirkan. Mungkin saja bumi memiliki kerak yang padat dan inti yang cair, tetapi tampaknya tetap saja tidak mungkin bahwa bagian-bagian kerak tersebut dapat bergerak-gerak. Di kemudian hari, dibuktikanlah teori yang dikemukakan geolog Inggris Arthur Holmes tahun 1920 bahwa tautan bagian-bagian kerak ini kemungkinan ada di bawah laut. Terbukti juga teorinya bahwa arus konveksi di dalam mantel bumi adalah kekuatan penggeraknya.[5][11][12]

Bukti pertama bahwa lempeng-lempeng itu memang mengalami pergerakan didapatkan dari penemuan perbedaan arah medan magnet dalam batuan-batuan yang berbeda usianya. Penemuan ini dinyatakan pertama kali pada sebuah simposium di Tasmania tahun 1956. Mula-mula, penemuan ini dimasukkan ke dalam teori ekspansi bumi,[13] namun selanjutnya justeru lebih mengarah ke pengembangan teori tektonik lempeng yang menjelaskan pemekaran (spreading) sebagai konsekuensi pergerakan vertikal (upwelling) batuan, tetapi menghindarkan keharusan adanya bumi yang ukurannya terus membesar atau berekspansi (expanding earth) dengan memasukkan zona subduksi/hunjaman (subduction zone), dan sesar translasi (translation fault). Pada waktu itulah teori tektonik lempeng berubah dari sebuah teori yang radikal menjadi teori yang umum dipakai dan kemudian diterima secara luas di kalangan ilmuwan. Penelitian lebih lanjut tentang hubungan antara seafloor spreading dan balikan medan magnet bumi (geomagnetic reversal) oleh geolog Harry Hammond Hess dan oseanograf Ron G. Mason[14][15][16][17] menunjukkan dengan tepat mekanisme yang menjelaskan pergerakan vertikal batuan yang baru.

Seiring dengan diterimanya anomali magnetik bumi yang ditunjukkan dengan lajur-lajur sejajar yang simetris dengan magnetisasi yang sama di dasar laut pada kedua sisi mid-oceanic ridge, tektonik lempeng menjadi diterima secara luas. Kemajuan pesat dalam teknik pencitraan seismik mula-mula di dalam dan sekitar zona Wadati-Benioff dan beragam observasi geologis lainnya tak lama kemudian mengukuhkan tektonik lempeng sebagai teori yang memiliki kemampuan yang luar biasa dalam segi penjelasan dan prediksi.

Penelitian tentang dasar laut dalam, sebuah cabang geologi kelautan yang berkembang pesat pada tahun 1960-an memegang peranan penting dalam pengembangan teori ini. Sejalan dengan itu, teori tektonik lempeng juga dikembangkan pada akhir 1960-an dan telah diterima secara cukup universal di semua disiplin ilmu, sekaligus juga membaharui dunia ilmu bumi dengan memberi penjelasan bagi berbagai macam fenomena geologis dan juga implikasinya di dalam bidang lain seperti paleogeografi dan paleobiologi.

Terminologi

sunting
 
Sebuah diagram zona subduksi antara dua lempeng tektonik. Peristiwa tersebut dapat menyebabkan gempa bumi, gunung berapi dan tsunami

Bagian lapisan luar, interior bumi dibagi menjadi lapisan litosfer dan lapisan astenosfer berdasarkan perbedaan mekanis dan cara terjadinya perpindahan panas. Llitosfer lebih dingin dan kaku, sedangkan astenosfer lebih panas dan secara mekanik lemah. Selain itu, litosfer kehilangan panasnya melalui proses konduksi, sedangkan astenosfer juga memindahkan panas melalui konveksi dan memiliki gradien suhu yang hampir adiabatik. Pembagian ini sangat berbeda dengan pembagian bumi secara kimia menjadi inti, mantel, dan kerak. Litosfer sendiri mencakup kerak dan juga sebagian dari mantel.

Suatu bagian mantel bisa saja menjadi bagian dari litosfer atau astenosfer pada waktu yang berbeda, tergantung dari suhu, tekanan, dan kekuatan gesernya. Prinsip kunci tektonik lempengan adalah bahwa litosfer terpisah menjadi lempengan-lempengan tektonik yang berbeda-beda. Lempengan ini bergerak menumpang di atas astenosfer yang mempunyai viskoelastisitas sehingga bersifat seperti fluida. Pergerakan lempengan bisa mencapai 10–40 mm/a (secepat pertumbuhan kuku jari) seperti di Punggungan tengah Atlantik, ataupun bisa mencapai 160 mm/a (secepat pertumbuhan rambut) seperti di Lempeng Nazca.[18][19]

Lempeng-lempeng ini tebalnya sekitar 100 km dan terdiri atas mantel litosferik yang di atasnya dilapisi dengan hamparan salah satu dari dua jenis material kerak.
Yang pertama adalah kerak samudera atau yang sering disebut dengan "sima", gabungan dari silikon dan magnesium.
Yang kedua adalah kerak benua yang sering disebut "sial", gabungan dari silikon dan aluminium.

Kedua jenis kerak ini berbeda dari segi ketebalan di mana kerak benua memiliki ketebalan yang jauh lebih tinggi dibandingkan dengan kerak samudera. Ketebalan kerak benua mencapai 30–50 km sedangkan kerak samudera hanya 5–10 km.

Dua lempeng akan bertemu di sepanjang batas lempeng (plate boundary), yaitu daerah di mana aktivitas geologis umumnya terjadi seperti gempa bumi dan pembentukan kenampakan topografis seperti gunung, gunung berapi, dan palung samudera. Kebanyakan gunung berapi yang aktif di dunia berada di atas batas lempeng, seperti Cincin Api Pasifik (Pacific Ring of Fire) di Lempeng Pasifik yang paling aktif dan dikenal luas.

Lempeng tektonik bisa merupakan kerak benua atau samudera, tetapi biasanya satu lempeng terdiri atas keduanya. Misalnya, Lempeng Afrika mencakup benua itu sendiri dan sebagian dasar Samudera Atlantik dan Hindia.

Perbedaan antara kerak benua dengan kerak samudera ialah berdasarkan kepadatan material pembentuknya.

  • Kerak samudera lebih padat daripada kerak benua dikarenakan perbedaan perbandingan jumlah berbagai elemen, khususnya silikon.
  • Kerak benua kurang padat karena komposisinya yang mengandung lebih sedikit silikon dan lebih banyak materi yang berat. Dalam hal ini, kerak samudera dikatakan lebih bersifat mafik ketimbang felsik.[20] Maka, kerak samudera umumnya berada di bawah permukaan laut seperti sebagian besar Lempeng Pasifik, sedangkan kerak benua timbul ke atas permukaan laut, mengikuti sebuah prinsip yang dikenal dengan isostasi.

Jenis batas lempeng

sunting
 
Tiga jenis batas lempeng (plate boundary).
 

Ada tiga jenis batas lempeng yang berbeda dari cara lempengan tersebut bergerak relatif terhadap satu sama lain. Tiga jenis ini masing-masing berhubungan dengan fenomena yang berbeda di permukaan. Tiga jenis batas lempeng tersebut adalah:[21]

  1. Batas transform (transform boundaries) terjadi jika lempeng bergerak dan mengalami gesekan satu sama lain secara menyamping di sepanjang sesar transform (transform fault). Gerakan relatif kedua lempeng bisa sinistral (ke kiri di sisi yang berlawanan dengan pengamat) ataupun dekstral (ke kanan di sisi yang berlawanan dengan pengamat). Contoh sesar jenis ini adalah Sesar San Andreas di California.
  2. Batas divergen/konstruktif (divergent/constructive boundaries) terjadi ketika dua lempeng bergerak menjauh satu sama lain. Mid-oceanic ridge dan zona retakan (rifting) yang aktif adalah contoh batas divergen
  3. Batas konvergen/destruktif (convergent/destructive boundaries) terjadi jika dua lempeng bergesekan mendekati satu sama lain sehingga membentuk zona subduksi jika salah satu lempeng bergerak di bawah yang lain, atau tabrakan benua (continental collision) jika kedua lempeng mengandung kerak benua. Palung laut yang dalam biasanya berada di zona subduksi, di mana potongan lempeng yang terhunjam mengandung banyak bersifat hidrat (mengandung air), sehingga kandungan air ini dilepaskan saat pemanasan terjadi bercampur dengan mantel dan menyebabkan pencairan sehingga menyebabkan aktivitas vulkanik. Contoh kasus ini dapat kita lihat di Pegunungan Andes di Amerika Selatan dan busur pulau Jepang (Japanese island arc). Batas konvergen dibagi kembali menjadi tiga, yaitu:
    1. Bila 2 lempeng samudra yang saling mendekat, lempeng yang satu akan menghunjam kebawah lempeng yang lain membentuk busur kepulauan.
    2. Bila lempeng benua dan lempeng samudra yang saling mendekat, maka lempeng samudranya akan menghunjam kebawah lempeng benua, membentuk pegunungan uplift seperti Andes.
    3. Bila 2 lempeng benua yang saling mendekat, terjadilah peristiwa tumbukan (collision), membentuk pegunungan lipatan seperti Himalaya.
    Selain 3 jenis batas lempeng di atas, terdapat juga zona batas lempeng (plate boundary zone), dimana interaksi antar lempengnya belum diketahui. Dan pada umumnya, zona batas lempeng melibatkan paling tidak 2 lempeng besar dan beberapa Lempeng mikro yang bergerak dengan cukup rumit, sehingga pada daerah tersebut terdapat fitur geologi yang kompleks dan pola gempa bumi. Contoh dari zona batas lempeng adalah daerah Mediterania-Alpine yang merupakan batas antara lempeng Eurasia dan Afrika, dimana terdapat kenampakan subduksi, kolisi, dan transform fault.[22]

Kecepatan Pergerakan Lempeng

sunting
 
Lempeng tektonik sekitar 210 juta tahun yang lalu saat (zaman Jurassic) dan terbentuknys Cincin Api Pasifik

Pergerakan lempeng tektonik bisa terjadi karena kepadatan relatif litosfer samudera dan karakter astenosfer yang relatif lemah. Pelepasan panas dari mantel telah didapati sebagai sumber asli dari energi yang menggerakkan lempeng tektonik. Pandangan yang disetujui sekarang, meskipun masih cukup diperdebatkan, adalah bahwa kelebihan kepadatan litosfer samudera yang membuatnya menyusup ke bawah di zona subduksi adalah sumber terkuat pergerakan lempengan.

Pada waktu pembentukannya di Punggungan tengah samudra (mid ocean ridge), litosfer samudera pada mulanya memiliki kepadatan yang lebih rendah dari astenosfer di sekitarnya, tetapi kepadatan ini meningkat seiring dengan penuaan karena terjadinya pendinginan dan penebalan. Besarnya kepadatan litosfer yang lama relatif terhadap astenosfer di bawahnya memungkinkan terjadinya penyusupan ke mantel yang dalam di zona subduksi sehingga menjadi sumber sebagian besar kekuatan penggerak-pergerakan lempengan. Kelemahan astenosfer memungkinkan lempengan untuk bergerak secara mudah menuju ke arah zona subduksi [23] Meskipun subduksi dipercaya sebagai kekuatan terkuat penggerak-pergerakan lempengan, masih ada gaya penggerak lain yang dibuktikan dengan adanya lempengan seperti lempengan Amerika Utara, juga lempengan Eurasia yang bergerak tetapi tidak mengalami subduksi di manapun. Sumber penggerak ini masih menjadi topik penelitian intensif dan diskusi di kalangan ilmuwan ilmu bumi.

Pencitraan dua dan tiga dimensi interior bumi (tomografi seismik) menunjukkan adanya distribusi kepadatan yang heterogen secara lateral di seluruh mantel. Variasi dalam kepadatan ini bisa bersifat material (dari kimia batuan), mineral (dari variasi struktur mineral), atau termal (melalui ekspansi dan kontraksi termal dari energi panas). Manifestasi dari keheterogenan kepadatan secara lateral adalah konveksi mantel dari gaya apung (buoyancy forces) [24] Bagaimana konveksi mantel berhubungan secara langsung dan tidak dengan pergerakan planet masih menjadi bidang yang sedang dipelajari dan dibincangkan dalam geodinamika. Dengan satu atau lain cara, energi ini harus dipindahkan ke litosfer supaya lempeng tektonik bisa bergerak. Ada dua jenis gaya yang utama dalam pengaruhnya ke pergerakan planet, yaitu friksi dan gravitasi.

Gaya gesek

sunting
Basal drag
Arus konveksi berskala besar di mantel atas disalurkan melalui astenosfer, sehingga pergerakan didorong oleh gesekan antara astenosfer dan litosfer.[25]
Slab suction
Arus konveksi lokal memberikan tarikan ke bawah pada lempeng di zona subduksi di palung samudera. Penyerotan lempengan (slab suction) ini bisa terjadi dalam kondisi geodinamik di mana tarikan basal terus bekerja pada lempeng ini pada saat ia masuk ke dalam mantel, meskipun sebetulnya tarikan lebih banyak bekerja pada kedua sisi lempengan, atas dan bawah.[26]

Gravitasi

sunting
Runtuhan gravitasi: Pergerakan lempeng terjadi karena lebih tingginya lempeng di Punggung tengah samudra. Litosfer samudera yang dingin menjadi lebih padat daripada mantel panas yang merupakan sumbernya, maka dengan ketebalan yang semakin meningkat lempeng ini tenggelam ke dalam mantel untuk mengkompensasikan beratnya, menghasilkan sedikit inklinasi lateral proporsional dengan jarak dari sumbu ini.:Dalam teks-teks geologi pada pendidikan dasar, proses ini sering disebut sebagai sebuah doronga. Namun, sebenarnya sebutan yang lebih tepat adalah runtuhan karena topografi sebuah lempeng bisa jadi sangat berbeda-beda dan topografi Punggung (ridge) yang melakukan pemekaran hanyalah fitur yang paling dominan. Sebagai contoh, pembengkakan litosfer sebelum ia turun ke bawah lempeng yang bersebelahan menghasilkan kenampakan yang bisa memengaruhi topografi. Lalu, mantel plume yang menekan sisi bawah lempeng tektonik bisa juga mengubah topografi dasar samudera.[butuh rujukan]
Slab-pull (tarikan lempengan)
Pergerakan lempeng sebagian disebabkan juga oleh berat lempeng yang dingin dan padat yang turun ke mantel di palung samudera.[27] Ada bukti yang cukup banyak bahwa konveksi juga terjadi di mantel dengan skala cukup besar. Pergerakan ke atas materi di Punggung tengah samudra mungkin sekali adalah bagian dari konveksi ini. Beberapa model awal Tektonik Lempeng menggambarkan bahwa lempeng-lempeng ini menumpang di atas sel-sel seperti ban berjalan.
Namun, kebanyakan ilmuwan sekarang percaya bahwa astenosfer tidaklah cukup kuat untuk secara langsung menyebabkan pergerakan oleh gesekan gaya-gaya itu. Slab pull sendiri sangat mungkin menjadi gaya terbesar yang bekerja pada lempeng. Model yang lebih baru juga memberi peranan yang penting pada penyerotan (suction) di palung, tetapi lempengan seperti Lempeng Amerika Utara tidak mengalami subduksi di manapun juga, tetapi juga mengalami pergerakan seperti juga Lempeng Afrika, Eurasia, dan Antartika. Kekuatan penggerak utama untuk pergerakan lempengan dan sumber energinya itu sendiri masih menjadi bahan riset yang sedang berlangsung

Gaya dari luar

sunting

Dalam studi yang dipublikasikan pada edisi Januari-Februari 2006 dari buletin Geological Society of America Bulletin, sebuah tim ilmuwan dari Italia dan Amerika Serikat berpendapat bahwa komponen lempeng yang mengarah ke barat berasal dari rotasi Bumi dan gesekan pasang bulan yang mengikutinya. Mereka berkata karena Bumi berputar ke timur di bawah bulan, gravitasi bulan meskipun sangat kecil menarik lapisan permukaan bumi kembali ke barat.

Beberapa orang juga mengemukakan ide kontroversial bahwa hasil ini mungkin juga menjelaskan mengapa Venus dan Mars tidak memiliki lempeng tektonik, yaitu karena ketiadaan bulan di Venus dan kecilnya ukuran bulan Mars untuk memberi efek seperti pasang di bumi.[28]

Pemikiran ini sendiri sebetulnya tidaklah baru. Hal ini sendiri aslinya dikemukakan oleh bapak dari hipotesis ini sendiri, Alfred Wegener, dan kemudian ditentang fisikawan Harold Jeffreys yang menghitung bahwa besarnya gaya gesek pasang yang diperlukan akan dengan cepat membawa rotasi bumi untuk berhenti sejak waktu lama.

Banyak lempeng juga bergerak ke utara dan barat, bahkan banyaknya pergerakan ke barat dasar Samudera Pasifik adalah jika dilihat dari sudut pandang pusat pemekaran (spreading) di Samudera Pasifik yang mengarah ke timur. Dikatakan juga bahwa relatif dengan mantel bawah, ada sedikit komponen yang mengarah ke barat pada pergerakan semua lempeng

Signifikansi relatif masing-masing mekanisme

sunting
 
Pergerakan lempeng berdasar pada data satelit GPS NASA JPLDiarsipkan 2011-07-21 di Wayback Machine.. Vektor di sini menunjukkan arah dan magnitudo gerakan.

Vektor yang sebenarnya pada pergerakan sebuah planet harusnya menjadi fungsi semua gaya yang bekerja pada lempeng itu. Namun, masalahnya adalah seberapa besar setiap proses ambil bagian dalam pergerakan setiap lempeng Keragaman kondisi geodinamik dan sifat setiap lempeng seharusnya menghasilkan perbedaan dalam seberapa proses-proses tersebut secara aktif menggerakkan lempeng. satu cara untuk mengatasi masalah ini adalah dengan melihat laju di mana setiap lempeng bergerak dan mempertimbangkan bukti yang ada untuk setiap kekuatan penggerak dari lempeng ini sejauh mungkin.[butuh rujukan]

Salah satu hubungan terpenting yang ditemukan adalah bahwa lempeng litosferik yang lengket pada lempeng yang tersubduksi bergerak jauh lebih cepat daripada lempeng yang tidak. Misalnya, Lempeng Pasifik dikelilingi zona subduksi (Ring of Fire) sehingga bergerak jauh lebih cepat daripada lempeng di Atlantik yang lengket pada benua yang berdekatan dan bukan lempeng tersubduksi. Maka, gaya yang berhubungkan dengan lempeng yang bergerak ke bawah (slab pull dan slab suction) adalah kekuatan penggerak yang menentukan pergerakan lempeng kecuali untuk lempeng yang tidak disubduksikan. Walau bagaimanapun juga, kekuatan penggerak pergerakan lempeng itu sendiri masih menjadi bahan perdebatan dan riset para ilmuwan.[butuh rujukan]

Daftar lempeng tektonik

sunting
 
Peta lempeng-lempeng tektonik.

Para ahli geologi umumnya sepakat bahwa lempeng tektonik berikut ini saat ini terdapat di permukaan bumi dengan batas-batas yang dapat ditentukan secara kasar. Lempeng tektonik terkadang dibagi lagi menjadi tiga kategori yang berubah-ubah: lempeng besar (atau primer), lempeng kecil (atau sekunder), dan lempeng mikro (atau lempeng tersier).[21]

Lempeng besar

sunting

Lempeng ini menyusun sebagian besar benua dan Samudera Pasifik. Lempeng dengan luasnya lebih dari 20 juta km2.

Lempeng Kecil

sunting

Lempeng-lempeng yang lebih kecil ini seringkali tidak ditampilkan pada peta lempeng besar, karena sebagian besar lempeng tersebut tidak mencakup wilayah daratan yang signifikan. Untuk keperluan daftar ini, lempeng minor adalah lempeng apa pun yang luasnya kurang dari 20 juta km2 tetapi lebih besar dari 1 juta km2.

Lempeng Mikro

sunting

Pergerakan lempeng telah menyebabkan pembentukan dan pemecahan benua seiring berjalannya waktu, termasuk juga pembentukan superkontinen yang mencakup hampir semua atau semua benua. Superkontinen Rodinia diperkirakan terbentuk 1 miliar tahun yang lalu dan mencakup hampir semua atau semua benua di Bumi dan terpecah menjadi delapan benua sekitar 600 juta tahun yang lalu. Delapan benua ini selanjutnya tersusun kembali menjadi superkontinen lain yang disebut Pangaea yang pada akhirnya juga terpecah menjadi Laurasia (yang menjadi Amerika Utara dan Eurasia), dan Gondwana (yang menjadi benua sisanya).[butuh rujukan]

Lihat pula

sunting

Referensi

sunting
  1. ^ "Apa Itu Gempa Tektonik? Berikut Proses Terjadinya dan Dampak yang Ditimbulkan". Voi.id. 
  2. ^ Read HH, Watson Janet (1975). Introduction to Geology. New York: Halsted. hlm. 13–15. 
  3. ^ Pengert0ian tektonik (Ilmugeografi.com)
  4. ^ Kious WJ, Tilling RI. "Historical perspective". This Dynamic Earth: the Story of Plate Tectonics (edisi ke-Online edition). U.S. Geological Survey. ISBN 0160482208. Diakses tanggal 2008-01-29. Abraham Ortelius in his work Thesaurus Geographicus ... suggested that the Americas were "torn away from Europe and Africa ... by earthquakes and floods ... The vestiges of the rupture reveal themselves, if someone brings forward a map of the world and considers carefully the coasts of the three [continents]." 
  5. ^ a b Frankel Henry (1978-07). "Arthur Holmes and Continental Drift". The British Journal for the History of Science. 11 (2): 130–150. 
  6. ^ Joly J (1909). Radioactivity and Geology: An Account of the Influence of Radioactive Energy on Terrestrial History. London: Archibald Constable. hlm. 36. ISBN 1402135777. 
  7. ^ Thomson W (1863). "On the secular cooling of the earth". Philosophical Magazine. 4 (25): 1–14. doi:10.1080/14786435908238225. 
  8. ^ Hughes Patrick. "Alfred Wegener (1880-1930): A Geographic Jigsaw Puzzle". On the Shoulders of Giants. Earth Observatory, NASA. Diarsipkan dari versi asli tanggal 2007-08-08. Diakses tanggal 2007-12-26. ... on January 6, 1912, Wegener ... proposed instead a grand vision of drifting continents and widening seas to explain the evolution of Earth's geography. 
  9. ^ Alfred Wegener (1966). The Origin of Continents and Oceans. Diterjemahkan oleh Biram John. Courier Dover. hlm. 246. ISBN 0486617084. 
  10. ^ Hughes Patrick. "Alfred Wegener (1880-1930): The Origin of Continents and Oceans". On the Shoulders of Giants. Earth Observatory, NASA. Diarsipkan dari versi asli tanggal 2008-04-20. Diakses tanggal 2007-12-26. By his third edition (1922), Wegener was citing geological evidence that some 300 million years ago all the continents had been joined in a supercontinent stretching from pole to pole. He called it Pangaea (all lands), ... 
  11. ^ Holmes Arthur (1928). "Radioactivity and Earth Movements". Transactions of the Geological Society of Glasgow. 18: 559–606. 
  12. ^ Holmes Arthur (1978). Principles of Physical Geology (edisi ke-3rd). Wiley. hlm. 640–641. ISBN 0471072516. 
  13. ^ 1958: The tectonic approach to continental drift. In: S. W. Carey (ed.): Continental Drift – A Symposium. University of Tasmania, Hobart, 177-363 (expanding Earth from p. 311 to p. 349)
  14. ^ Korgen Ben J (1995). "A Voice From the Past: John Lyman and the Plate Tectonics Story" (PDF). Oceanography. 8 (1): 19–20. Diarsipkan dari versi asli (PDF) tanggal 2007-09-26. Diakses tanggal 2008-08-17. 
  15. ^ Spiess Fred, Kuperman William (2003). "The Marine Physical Laboratory at Scripps" (PDF). Oceanography. 16 (3): 45–54. Diarsipkan dari versi asli (PDF) tanggal 2007-09-26. Diakses tanggal 2008-08-17. 
  16. ^ Mason RG, Raff AD (1961). "Magnetic survey off the west coast of the United States between 32°N latitude and 42°N latitude". Bulletin of the Geological Society of America. 72: 1259–1266. doi:10.1130/0016-7606(1961)72[1259:MSOTWC]2.0.CO;2. 
  17. ^ Raff AD, Mason RG (1961). "Magnetic survey off the west coast of the United States between 40°N latitude and 52°N latitude". Bulletin of the Geological Society of America. 72: 1267–1270. doi:10.1130/0016-7606(1961)72[1267:MSOTWC]2.0.CO;2. 
  18. ^ Huang Zhen Shao (1997). "Speed of the Continental Plates". The Physics Factbook. 
  19. ^ Hancock, Paul L; Skinner, Brian J; Dineley, David L (2000). The Oxford Companion to The Earth. Oxford University Press. ISBN 0198540396. 
  20. ^ Schmidt Victor A, Harbert William. "The Living Machine: Plate Tectonics". Planet Earth and the New Geosciences (edisi ke-third). ISBN 0787242969. Diarsipkan dari versi asli tanggal 2010-01-24. Diakses tanggal 2008-01-28. 
  21. ^ a b "Pengertian Tektonik Lempeng, Jenis dan Pembagiannya | Portal-Ilmu.com". 2019-07-26. Diakses tanggal 2020-09-25. 
  22. ^ Lempeng tektonik dan jenisnya (Kompas.com)
  23. ^ Pedro Mendia-Landa. "Myths and Legends on Natural Disasters: Making Sense of Our World". Diakses tanggal 2008-02-05. 
  24. ^ Tanimoto Toshiro, Lay Thorne (2000-11-07). "Mantle dynamics and seismic tomography". Proceedings of the National Academy of Science. 97 (23): 12409–12410. doi:10.1073/pnas.210382197. PMID 11035784. 
  25. ^ "Basal drag (Lithosphere.info)". Diarsipkan dari versi asli tanggal 2020-07-08. Diakses tanggal 2020-03-06. 
  26. ^ tentang slab suction di Brainly.co.id[pranala nonaktif permanen]
  27. ^ Conrad CP, Lithgow-Bertelloni C (2002). "How Mantle Slabs Drive Plate Tectonics". Science. 298 (5591): L45. doi:10.1126/science.1074161. 
  28. ^ Lovett Richard A (2006-01-24). "Moon Is Dragging Continents West, Scientist Says". National Geographic News.