Kubus
Dalam geometri, kubus adalah bangun ruang tiga dimensi yang dibatasi oleh enam bidang sisi yang kongruen berbentuk bujur sangkar. Kubus memiliki 6 sisi, 12 rusuk, dan 8 titik sudut. Kubus juga disebut dengan bidang enam beraturan.[1] Selain itu, kubus juga merupakan bentuk khusus dalam prisma segi empat, dan juga termasuk salah satu dari bangun ruang Platonik.
Kubus | |
---|---|
Jenis | bangun ruang Platonik |
Muka | 6 |
Rusuk | 12 |
titik sudut | 8 |
Konfigurasi titik sudut | V 3.3.3.3 |
Simbol Wythoff | 3 |
Simbol Schläfli | {4,3} |
Diagram Coxeter | |
Grup simetri | Oh, B3, [4,3], (* 432) |
Sudut dihedral (derajat) | 90° |
Sifat-sifat | beraturan, cembung zonohedron |
Jaring | |
Sifat
suntingKubus adalah bangun ruang yang terdiri atas enam buah sisi (atau muka) bujur sangkar yang kongruen. Kubus memiliki 12 buah rusuk. Karena mukanya kongruen, kubus memiliki rusuk yang sama panjang. Selain itu, kubus memiliki delapan buah titik sudut dan memiliki diagonal ruang dengan panjang yang sama.[1]
Sebuah kubus dengan panjang rusuk memiliki luas permukaan[2] yakni enam kali luas persegi. Luas bidang diagonal beserta keseluruhannya, masing-masing dapat dirumuskan sebagai Selain itu, kubus dengan panjang rusuk yan sama memiliki volume[2] Diagonal sisi dari kubus ( ) beserta keseluruhannya ( ), dan diagonal ruang dari kubus ( ) beserta keseluruhannya ( ), juga masing-masing dirumuskan sebagai
Menggandakan kubus
suntingMenggandakan kubus (doubling the cube), atau disebut dengan masalah Delian, adalah masalah yang dicetuskan oleh matematikawan Yunani kuno. Masalah ini melibatkan konstruksi sebuah kubus dengan menggunakan jangka dan penggaris, dan konstruksi tersebut dimulai dari panjang rusuk dari kubus dan mengonstruksi panjang rusuk kubus dengan dua kali lipatnya volume dari kubus sebelumnya. Sayangnya, masalah ini masih belum terpecahkan. Hingga pada tahun 1837, Pierre Wantzel membuktikan bahwa konstruksi tersebut mustahil sebab akar pangkat tiga dari 2 bukanlah bilangan terkonstruksikan (constructible number).
Referensi
sunting- ^ a b S.Pd, Sukma Pratiwi (2015). Rangkuman Penting Intisari 4 Matapelajaran Utama SMA Matematika, Biologi, Fisika, Kimia: Wajib Dimiliki Semua Murid Dan Guru. Lembar Langit Indonesia. hlm. 63. ISBN 978-602-1016-18-3.
- ^ a b Matematika SMP Kelas VIII. Yudhistira Ghalia Indonesia. hlm. 185. ISBN 978-979-746-785-2.
Pranala luar
sunting- Weisstein, Eric W. "Cube". MathWorld.
- Cube: Interactive Polyhedron Model
- Volume kubus, dengan animasi interaktif
- Cube (Situs Robert Webb)