Geometri simplektik

Geometri simplektik adalah sebuah cabang geometri diferensial dan topologi diferensial yang mempelajari manifol-manifol simplektik; yang merupakan manifol-manifol diferensiabel yang dialati dengan bentuk tertutup dan nondegenerasi Geometri simplektik bermula dari perumusan Hamiltonian dari mekanika klasik dimana ruang fase dari sistem-sistem klasik tertentu ditampatkan pada struktur manifol simplektik.[1]

Potret fase dari oskilator Van der Pol, sebuah sistem satu dimensional. Ruang fase adalah obnyek asli dari pembelajaran dalam geometri simplektik.

Pendahuluan

sunting

Geometri simplektis didefinisikan pada ruang berdimensi genap mulus yang merupakan lipatan terdiferensiasi. Pada ruang ini didefinisikan sebuah benda geometris, yaitu bentuk simplektik, yang memungkinkan untuk pengukuran ukuran benda dua dimensi di ruang. Bentuk simplektis dalam geometri simplektis memainkan peran analog dengan metrik tensor di geometri Riemannian. Jika tensor metrik mengukur panjang dan sudut, bentuk simplektis mengukur area berorientasi.[2]

Geometri simplektik muncul dari studi tentang mekanika klasik dan salah satu contoh struktur simplektik adalah gerak suatu benda dalam satu dimensi. Untuk menentukan lintasan objek, seseorang membutuhkan posisi q dan momentum p , yang membentuk sebuah titik ( p , q ) pada bidang Euclidean ℝ2. Dalam hal ini, bentuk simplektisnya adalah

 

dan merupakan bentuk wilayah yang mengukur luas L dari suatu wilayah S dalam bidang melalui integrasi:

 

The area is important because as conservative dynamical systems evolve in time, this area is invariant.[2]

Geometri simplektis berdimensi lebih tinggi didefinisikan secara analogis. Geometri simplektis berdimensi 2n terbentuk dari pasangan arah

 

dalam lipatan dimensi 2n bersama dengan bentuk simplektis

 

Bentuk simplektis ini menghasilkan ukuran wilayah dimensi 2n - V di ruang angkasa sebagai jumlah area proyeksi V ke masing-masing bidang yang dibentuk oleh pasangan arah[2]

 

Perbandingan dengan geometri Riemannian

sunting

Geometri simplektis memiliki sejumlah persamaan dan perbedaan dari geometri Riemannian, yaitu studi tentang lipatan terdiferensiasi yang dilengkapi dengan 2-tensor simetris nondegenerasi. Berbeda dengan kasus Riemannian, lipatan simplektis tidak memiliki invarian lokal seperti kelengkungan. Ini adalah konsekuensi dari Teorema Darboux yang menyatakan bahwa lingkungan dari apapun titik lipatan simplektis berdimensi 2n isomorfik terhadap struktur simplektis standar pada himpunan terbuka2n. Perbedaan lain dengan geometri Riemannian adalah bahwa tidak setiap kebutuhan lipatan yang dapat dibedakan menerima bentuk simplektis; ada batasan topologi tertentu. Misalnya, setiap lipatan simplektis berdimensi genap dan berorientasi. Selain itu, bila M adalah lipatan simplektis tertutup, kemudian kohomologi de Rham grup ke-2 H2(M) tidak sepele; ini menyiratkan, misalnya, bahwa satu-satunya n -bola yang menerima bentuk simplektis adalah 2-bola. Sebuah paralel yang dapat ditarik antara dua subjek adalah analogi antara geodesik dalam geometri Riemannian dan kurva pseudoholomorfik dalam geometri simplektis: Geodesik adalah kurva dengan panjang terpendek (secara lokal), sedangkan kurva pseudoholomorfik adalah permukaan dengan luas minimal. Kedua konsep tersebut memainkan peran mendasar dalam disiplin ilmu masing-masing.

Contoh dan struktur

sunting

Setiap lipatan Kähler juga merupakan lipatan simplektis. Hingga tahun 1970-an, para ahli simplektis tidak yakin apakah ada lipatan simplektis non-Kähler yang kompak, tetapi sejak itu banyak contoh telah dibuat (yang pertama adalah karena William Thurston); khususnya, Robert Gompf telah menunjukkan bahwa setiap kelompok yang disajikan secara terbatas muncul sebagai grup fundamental dari beberapa lipatan-4 simplektis, sangat kontras dengan kasus Kähler.

Kebanyakan lipatan simplektis, bisa dikatakan, bukanlah Kähler; dan karenanya tidak memiliki integral struktur kompleks yang kompatibel dengan bentuk simplektis. Mikhail Gromov, bagaimanapun, membuat pengamatan penting bahwa lipatan simplektis memang mengakui kelimpahan struktur yang hampir kompleks yang kompatibel, sehingga mereka memenuhi semua aksioma untuk lipatan Kähler kecuali persyaratan bahwa peta transisi adalah holomorfik.

Gromov menggunakan keberadaan struktur yang hampir kompleks pada lipatan simplektis untuk mengembangkan teori kurva pseudoholomorfik, Invarian ini juga memainkan peran kunci dalam teori string.

Nama "kelompok kompleks" yang saya anjurkan sebelumnya dalam kaitannya dengan kompleks garis, karena ini didefinisikan dengan lenyapnya bentuk-bentuk bilinear antisimetris, telah menjadi lebih dan lebih memalukan melalui tabrakan dengan kata "kompleks" dalam konotasi bilangan kompleks. Karena itu saya mengusulkan untuk menggantinya dengan kata sifat Yunani yang sesuai "simplektis". Dickson menyebut kelompok itu sebagai "kelompok linier Abelian" sebagai penghormatan kepada Abel yang pertama kali mempelajarinya.

(Weyl 1939, hlm. 165)

Geometri simplektik juga disebut 'Topologi simplektik' l meskipun yang terakhir sebenarnya merupakan subbidang yang berkaitan dengan pertanyaan global penting dalam geometri simplektis.

Istilah "simplektis", diperkenalkan oleh (Weyl 1939, footnote, p.165), adalah calque dari "kompleks"; sebelumnya, "kelompok simplektis" disebut "kelompok kompleks garis". "Kompleks "berasal dari bahasa Latin com-plexus , yang berarti" dijalin bersama "(co- + plexus), sedangkan simplektis berasal dari bahasa Yunani sym-plektikos (συμπλεκτικός); dalam kedua kasus batang berasal dari akar Indo-Eropa *plek-.[3] Nama tersebut mencerminkan hubungan yang dalam antara struktur kompleks dan simplektis.

Lihat pula

sunting

Catatan

sunting
  1. ^ Hartnett, Kevin (February 9, 2017). "A Fight to Fix Geometry's Foundations". Quanta Magazine. Diarsipkan dari versi asli tanggal 2017-03-15. Diakses tanggal 2017-09-26. 
  2. ^ a b c McDuff, Dusa (2010), "What is Symplectic Geometry?" (PDF), dalam Hobbs, Catherine; Paycha, Sylvie, European Women in Mathematics – Proceedings of the 13th General Meeting, World Scientific, hlm. 33–51, ISBN 9789814277686, diarsipkan dari versi asli (PDF) tanggal 2014-10-06, diakses tanggal 5 October 2014 
  3. ^ The Symplectization of Science Diarsipkan 2011-06-13 di Wayback Machine., Mark J. Gotay and James A. Isenberg, p. 13.

Referensi

sunting

Pranala luar

sunting