Garam Tutton

kelas senyawa kimia
(Dialihkan dari Garam Tuttons)

Garam Tutton adalah sebuah keluarga garam dengan rumus M2M'(SO4)2(H2O)6 (sulfat) atau M2M'(SeO4)2(H2O)6 (selenat). Bahan-bahan ini merupakan garam ganda, artinya mereka mengandung dua kation berbeda, M+ dan M'2+ yang mengkristal dalam kisi ionik beraturan yang sama.[1] Kation univalen dapat berupa kalium, rubidium, sesium, amonium (NH4), amonium terdeuterasi (ND4), atau talium. Ion natrium atau litium terlalu kecil. Kation divalen dapat berupa magnesium, vanadium, kromium, mangan, besi, kobalt, nikel, tembaga, seng atau kadmium. Selain sulfat dan selenat, anion divalen dapat berupa kromat (CrO42−), tetrafluoroberilat (BeF42−), hidrogenfosfat (HPO42−),[2] atau monofluorofosfat (PO3F2−). Garam Tutton mengkristal dalam grup ruang monoklinik P21/a.[3] Kekokohan tersebut merupakan hasil dari ikatan hidrogen komplementer antara anion dan kation tetrahedral serta interaksinya dengan kompleks logam akuo [M(H2O)6]2+.

Contoh dan senyawa terkait

sunting

Mungkin yang paling terkenal adalah garam Mohr, fero amonium sulfat (NH4)2Fe(SO4)2.(H2O)6).[4] Contoh lainnya meliputi garam Tutton vanado (NH4)2V(SO4)2(H2O)6 dan garam Tutton kromo (NH4)2Cr(SO4)2(H2O)6.[5] Dalam padatan dan larutan, ion M'2+ terdapat sebagai kompleks logam akuo [M'(H2O)6]2+.

Senyawa yang terkait dengan garam Tutton adalah alum, yang juga merupakan garam ganda tetapi dengan rumus MM'(SO4)2(H2O)12. Garam Tutton pernah disebut sebagai "alum palsu".[6]

Sejarah

sunting

Garam Tutton kadang-kadang disebut Schönit, dari mineral alami yang disebut Schönit (K2Mg(SO4)2(H2O)6). Namanya diambil dari Alfred E. H. Tutton, yang mengidentifikasi dan mengarakterisasi sejumlah besar garam ini sekitar tahun 1900.[7] Garam tersebut memiliki sejarah yang penting karena dapat diperoleh dengan kemurnian tinggi dan berfungsi sebagai reagen dan standar spektroskopi yang andal.

Tabel garam

sunting
M1 M2 rumus nama a Å b Å c Å β° V Å3 warna biaksial 2V lainnya
K Cd K2[Cd(H2O)6](SO4)2 Kalium kadmium sulfat heksahidrat[8]
Cs Cd Cs2[Cd(H2O)6](SO4)2 Sesium kadmium sulfat heksahidrat[9]
NH4 Cd (NH4)2[Cd(H2O)6](SO4)2 Amonium kadmium sulfat hidrat 9,395 12,776 6,299 106°43' 727,63 nirwarna 1,486 1,488 1,494 biaksial (-f) besar[10] kerapatan=2,05[11]

Perlahan-lahan kehilangan air di udara kering.[12]

K Co K2[Co(H2O)6](SO4)2[13] Kalium kobalto sulfat[14] 6,151 9,061 12,207 104,8° 657,78[15] merah kerapatan=2,21
Rb Co Rb2[Co(H2O)6](SO4)2 Rubidium heksaakuakobalt(II) sulfat 6,24 9,19 12,453 105,99° 686,5[12] merah rubi[16] kerapatan=2,56
Cs Co Cs2[Co(H2O)6](SO4)2 Sesium heksaakuakobalt(II) sulfat 9,318(1) 12,826(3) 6,3650(9) 107,13(1)° 727,0[17] merah gelap
NH4 Co (NH4)2[Co(H2O)6](SO4)2[18] Kobalto amonium sulfat heksahidrat 6,242 9,255 12,549 106,98° 693,3[19] lembayung[20] kerapatan=1,89
Tl Co Tl2[Co(H2O)6](SO4)2 Kobalto talium sulfat heksahidrat, Talium heksaakuakobalt(II) sulfat, 9,227(1) 12,437(2) 6,220(1) 106,40(1)° 684,7 merah muda[21]
Tl Co Tl2[Co(H2O)6](SO4)2 Ditalium kobalt sulfat heksahidrat 9,235(1) 12,442(2) 6,227(1) 106,40(1)° pink kekuningan 1,599 1,613 1,624 biaksial (-) besar sedang[22] kerapatan=4,180 g/cm3
Rb Cr Rb2[Cr(H2O)6](SO4)2[23] Dirubidium kromium sulfat heksahidrat
Cs Cr Cs2[Cr(H2O)6](SO4)2[23] Disesium kromium sulfat heksahidrat
ND4 Cr (ND4)2Cr(SO4)2 • 6H2O[23] Diamonium terdeuterasi kromium sulfat heksahidrat biru terang terbentuk dari   dengan amonium sulfat dalam air minimal di bawah gas nitrogen. Stabil di udara dari oksidasi, tetapi dapat mengalami dehidrasi.[24]
K Cu K2[Cu(H2O)6](SO4)2 Sianokroit[14] 9,27 12,44 6,30 104,47[25] 663,0[25] biru hijau pucat kerapatan=2,21[25] dalam sel unit 7,76 antara dua atom Cu[26]
Rb Cu Rb2[Cu(H2O)6](SO4)2 Dirubidium heksaakuatembaga sulfat 9,267 12,366 6,228 105°19' 686,8 biru kehijauan cemerlang 1,488 1,491 1,506 biaksial (+)[27] sedang kerapatan=2,580 g/cm3[10] Cu-O 2,098 Å Rb-O 3,055 Å.[27]
Cs Cu Cs2[Cu(H2O)6](SO4)2[28] Disesium heksaakuatembaga sulfat 9,439 12,762 6,310 106°11' 718,5 biru kehijauan cemerlang 1,504 1,506 1,514 biaksial (+) kerapatan=2,864 g/cm3[29]
NH4 Cu (NH4)2[Cu(H2O)6](SO4)2 Amonium heksaakuatembaga(II) sulfat[30] 6,31 12,38 9,22 106,16° 691,25[31] kerapatan=1,921;[31] panas pembentukan=−777,9 kcal/mol;[31] Sumbu distorsi Jahn-Teller beralih di bawah tekanan ~1500 bar, sumbu a,b menyusut 3,3% dan 3,5% dan sumbu c memanjang 4,5%.[30]
Tl Cu Tl2[Cu(H2O)6](SO4)2 Talium tembaga sulfat hidrat 9,268 12,364 6,216 105°33' biru kehijauan cemerlang 1,600 1,610 1,620 biaksial sangat besar[32] kerapatan=3,740 g/cm3
K Fe K2[Fe(H2O)6](SO4)2 Dikalium besi sulfat heksahidrat[14]
Rb Fe Rb2[Fe(H2O)6](SO4)2 Rubidium besi sulfat hidrat 9,218 12,497 6,256 105°45' hijau pucat 1,480 1,489 1,501 biaksial (+) besar kerapatan=2,523 g/cm3[33]
Cs Fe Cs2[Fe(H2O)6](SO4)2 Sesium heksaakuabesi(II) sulfat 9,357(2) 12,886(2) 6,381(1) 106,94(1)° 736,0 kuning gelap[17] hijau sangat pucat 1,501 1,504 1,516 biaksial (+) sedang[34] kerapatan=2,805
NH4 Fe (NH4)2[Fe(H2O)6](SO4)2 Mohrit[14] 6,24(1) 12,65(2) 9,32(2) 106,8(1) 704,28 hijau pucat seperti kaca kerapatan=1,85; dinamai dari Karl Friedrich Mohr[35]
Tl Fe Tl2[Fe(H2O)6](SO4)2 Talium heksaakuabesi(II) sulfat 9,262(2) 12,497(1) 6,235(2) 106,15(1)° 693,2[21] hijau muda 1,590 1,605 =1,616 biaksial (-) besar kerapatan=3,662 g/cm3[36]
K Mg K2[Mg(H2O)6](SO4)2 Pikromerit 9,04 12,24 6,095 104°48'[14] nirwarna atau putih 1,460 1,462 1,472 biaksial (+) sedang kerapatan=2,025 g/cm3;[37] memperluas lingkup koordinasi kedua di sekitar Mg.[14]
Rb Mg Rb2[Mg(H2O)6](SO4)2 Rubidium magnesium sulfat heksahidrat[38] 9,235 12,486 6,224 105°59' nirwarna 1,467 1,469 1,476[39] biaksial
Cs Mg Cs2[Mg(H2O)6](SO4)2 Sesium heksaakuamagnesium sulfat 9,338(2) 12,849(4) 6,361(2) 107,07(2)° 729,6 nirwarna[17] 1,481 1,485 1,492 biaksial (+) sedang kerapatan=2,689[40]
NH4 Mg (NH4)2[Mg(H2O)6](SO4)2 Bousingaultit 9,28 12,57 6,2 107°6'[14][18]
NH4 Mg (NH4)2[Mg(H2O)6](SO4)2 Amonium magnesium kromium oksida hidrat 9,508±0,001 12,674 6,246 106°14' kuning terang 1,637 1,638 1,653 biaksial (+) kecil kerapatan=1,840 g/cm3[10]
Tl Mg Tl2[Mg(H2O)6](SO4)2[41] Ditalium magnesium sulfat heksahidrat 9,22 9,262(2) 12,42 12,459(2) 6,185 6,207(1) 106°30' 106,39(2)° 687,1 nirwarna[21] kerapatan=3,532 g/cm3
Rb Mn Rb2[Mn(H2O)6](SO4)2 Dirubidium heksaakuamangan sulfat(VI) 9,282(2) 12,600(2) 6,254(2) 105,94(2) 703,3Å3[42][43]
Cs Mn Cs2[Mn(H2O)6](SO4)2 Sesium heksaakuamangan(II) sulfat 9,418(3) 12,963(2) 6,386(3) 107,17(4)° 744,9 pink pucat[17] putih keunguan[44] 1,495 1,497 1,502 biaksial (+) besar kerapatan=2,763[44]
NH4 Mn (NH4)2[Mn(H2O)6](SO4)2 Mangan amonium sulfat heksahidrat 9,40 12,74 6,26 107,0°[45] pink pucat 1,482 1,456 1,492 biaksial (+) besar kerapatan=1,827 [46]
Tl Mn Tl2[Mn(H2O)6](SO4)2 Talium mangan sulfat heksahidrat 9,3276(6), 9,322(2) 12,5735(8), 12,565(2) 6,2407(4), dan 6,233(1) 106,310(3)°[47] 106.29(2)°, 700,8[21] pink muda
K Ni K2Ni(SO4)2 • 6H2O[13] Kalium nikel sulfat heksahidrat[14] digunakan sebagai filter UV[48]
Rb Ni Rb2[Ni(H2O)6](SO4)2 Rubidium nikel sulfat heksahidrat 6,221 12,41 9,131 106,055° 677,43 Permukaan 001 memiliki pertumbuhan bertahap sebesar 4,6 Å, pita transmisi optik pada 250, 500, dan 860 nm yang sama dengan nikel sulfat heksahidrat, tetapi pita UV mentransmisikan lebih banyak. Serapan berat 630-720 nm dan 360-420 nm3; kerapatan 2,596 g cm−3.[48] Stabil hingga suhu 100,5 °C; kelarutan dalam g/100ml=0,178t + 4,735 MW=529,87
Cs Ni Cs2[Ni(H2O)6](SO4)2 Sesium heksaakuanikel(II) sulfat, Sesium nikel sulfat heksahidrat 9,259(2) 12,767(2) 6,358(1) 107,00(2)° 718,7[17] biru kehijauan 1,507 1,512 1,516 biaksial (-) sangat besar kerapatan=2,883;[49] digunakan sebagai filter UV[48]
NH4 Ni (NH4)2[Ni(H2O)6](SO4)2 Nikel-bousingaultit[14][50] 9,186 12,468 6,424 684,0 hijau kebiruan[51][52] kerapatan=1,918; CAS=51287-85-5
Tl Ni Tl2[Ni(H2O)6](SO4)2 Talium heksaakuanikel(II) sulfat 9,161(2) 12,389(2) 6,210(2) 106,35(2)° 676,3 biru kehijauan[21] 1,602 1,615 1,620 biaksial (-) besar kerapatan=3,763[53]
K Ru K2[Ru(H2O)6](SO4)2 [54] 8,950 12,268 6,135 105,27 644
Rb Ru Rb2[Ru(H2O)6](SO4)2 [54] 9,132 12,527 6,351 106,30
K V K2[V(H2O)6](SO4)2 Vanadium(II) kalium sulfat heksahidrat[55]
Rb V Rb2[V(H2O)6](SO4)2 Rubidium vanadium(II) sulfat
NH4 V (NH4)2[V(H2O)6](SO4)2 Vanadium(II) amonium sulfat heksahidrat 9,42 12,76 6,22 107,2° 714,2 ametis kerapatan=1,8 V-O; panjang 2,15Å[56]
K Zn K2[Zn(H2O)6](SO4)2[13][14] Dikalium seng sulfat heksahidrat 9,041 12,310 6,182 104,777° nirwarna 1,478 1,481 1,496 biaksial besar kerapatan=2,242 g/cm3;[57] Dekomposisi termal pada suhu 252 K.[58]
Rb Zn Rb2[Zn(H2O)6](SO4)2 Rubidium seng sulfat heksahidrat[59] 9,185 12,450 6,242 105°54' nirwarna 1,483 1,489 1,497 biaksial besar[60]
Cs Zn Cs2[Zn(H2O)6](SO4)2 Seng sesium sulfat heksahidrat[61] 9,314(2) 12,817(2) 6,369(2) 106,94(2)° 727,3 nirwarna[17] 1,507 1,610 1,615 biaksial (-) besar kerapatan=2,881[62]
NH4 Zn (NH4)2[Zn(H2O)6](SO4)2 9,205 12,475 6,225 106°52'[18] 684,1 panas peleburan 285 J/g[63]
Tl Zn Tl2[Zn(H2O)6](SO4)2 Talium heksaakuaseng(II) sulfat [64] 9,219(2) 12,426(2) 6,226(1) 106,29(2)° 684,6 nirwarna[21]
selenat
Cs Ni Cs2[Zn(H2O)6](SeO4)2 Disesium nikel selenat heksahidrat[65] 7,4674 7,9152 11,7972 106,363 669,04 hijau muda
Rb Cu Rb2[Cu(H2O)6](SeO4)2 Dirubidium tembaga selenat heksahidrat[66] 6,363 12,431 9,373 104,33 718,3

Garam organik

sunting

Beberapa basa organik juga dapat membentuk garam yang mengkristal seperti garam Tutton.

rumus nama a Å b Å c Å β° V Å3 warna biaksial 2V lainnya
(C4H12N2)[Zn(H2O)6](SO4)2 Piperazinediium heksaakuaseng(II) bis(sulfat)[67] 12,9562 10,6502 13,3251 114,032 1679,30 nirwarna
Kadmium kreatininium sulfat[68] 6,5584 27,871 7,1955 110,371 1232,99 nirwarna

Referensi

sunting
  1. ^ Housecroft, C. E.; Sharpe, A. G. (2008). Inorganic Chemistry (edisi ke-3rd). Prentice Hall. hlm. 699. ISBN 978-0131755536. 
  2. ^ Ettoumi, Houda; Bulou, Alain; Suñol, Joan Josep; Mhiri, Tahar (November 2015). "Synthesis, crystal structure, and vibrational study of  : A new metal hydrogenphosphate compound". Journal of Molecular Structure. 1099: 181–188. Bibcode:2015JMoSt1099..181E. doi:10.1016/j.molstruc.2015.06.060. 
  3. ^ Bosi, Ferdinando; Belardi, Girolamo; Ballirano, Paolo (2009). "Structural features in Tutton's salts K2[M2+(H2O)6](SO4)2, with M2+ = Mg, Fe, Co, Ni, Cu, and Zn". American Mineralogist. 94 (1): 74–82. Bibcode:2009AmMin..94...74B. doi:10.2138/am.2009.2898. 
  4. ^ B. N. Figgis; E. S. Kucharski; P. A. Reynolds; F. Tasset (1989). "The structure of   at 4.3 K by neutron diffraction". Acta Crystallogr. C45: 942–944. doi:10.1107/S0108270188013903. 
  5. ^ Greenwood, Norman N.; Earnshaw, A. (1997), Chemistry of the Elements (edisi ke-2), Oxford: Butterworth-Heinemann, ISBN 0-7506-3365-4 
  6. ^ Taylor, F. Sherwood (1942). Inorganic and Theoretical Chemistry (edisi ke-6). William Heinemann. 
  7. ^ A. E. Tutton (1900–1901). "A Comparative Crystallographical Study of the Double Selenates of the Series  .—Salts in Which M Is Zinc". Proceedings of the Royal Society of London. 67 (435–441): 58–84. doi:10.1098/rspl.1900.0002 . 
  8. ^ Nyquist, Richard A.; Kagel, Ronald O. (30 Maret 1972). Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts: Infrared Spectra of Inorganic Compounds. Academic Press. hlm. 297–298. ISBN 9780080878522. Diakses tanggal 30 Desember 2023.  (juga meliputi Ni Cu)
  9. ^ Lakshman, S.V.J.; T.V.Krishna Rao (1984). "Absorption spectrum of   ion doped in caesium cadmium sulphate hexahydrate single crystal". Solid State Communications. 49 (6): 567–570. Bibcode:1984SSCom..49..567L. doi:10.1016/0038-1098(84)90193-5. ISSN 0038-1098. 
  10. ^ a b c Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 8. National Bureau of Standards. Diakses tanggal 30 Desember 2023. 
  11. ^ "materials database". Atom Work. Diakses tanggal 30 Desember 2023. 
  12. ^ a b "Materials Database". Atom Work. Diakses tanggal 30 Desember 2023. 
  13. ^ a b c Ananthanarayanan, V. (1961). "Raman spectra of crystalline double sulphates". Zeitschrift für Physik. 163 (2): 144–157. Bibcode:1961ZPhy..163..144A. doi:10.1007/BF01336872. ISSN 1434-6001. 
  14. ^ a b c d e f g h i j Bosi, F.; G. Belardi; P. Ballirano (2009). "Structural features in Tutton's salts  , with  ". American Mineralogist. 94 (1): 74–82. Bibcode:2009AmMin..94...74B. doi:10.2138/am.2009.2898. ISSN 0003-004X. 
  15. ^ "materials database". Atom Work. Diakses tanggal 30 Desember 2023. 
  16. ^ Krebs, Robert E. (1 Januari 2006). The History And Use of Our Earth's Chemical Elements: A Reference Guide. Greenwood Publishing Group. hlm. 59. ISBN 9780313334382. Diakses tanggal 30 Desember 2023. 
  17. ^ a b c d e f Euler, H.; B. Barbier; A. Meents; A. Kirfel (2003). "Crystal structure of Tutton's salts,  ,  " (PDF). Zeitschrift für Kristallographie. New Crystal Structures. 218 (4): 409–413. doi:10.1524/ncrs.2003.218.4.409 . ISSN 1433-7266. Diakses tanggal 30 Desember 2023. 
  18. ^ a b c Ananthanarayanan, V. (June 1962). "Raman spectra of crystalline double sulphates Part II. Ammonium double sulphates". Zeitschrift für Physik. 166 (3): 318–327. Bibcode:1962ZPhy..166..318A. doi:10.1007/BF01380779. 
  19. ^ "Materials database". Atom Work. 
  20. ^ Lim, Ae Ran (2011). "Thermodynamic properties and phase transitions of Tutton salt   crystals". Journal of Thermal Analysis and Calorimetry. 109 (3): 1619–1623. doi:10.1007/s10973-011-1849-2. ISSN 1388-6150. 
  21. ^ a b c d e f Euler, Harald; Bruno Barbier; Alke Meents; Armin Kirfel (2009). "Crystal structures of Tutton′s salts  ,  ". Zeitschrift für Kristallographie - New Crystal Structures. 224 (3): 355–359. doi:10.1524/ncrs.2009.0157 . ISSN 1433-7266. 
  22. ^ Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. hlm. 70. Diakses tanggal 30 Desember 2023. 
  23. ^ a b c Dobe, Christopher; Christopher Noble; Graham Carver; Philip L. W. Tregenna-Piggott; Garry J. McIntyre; Anne-Laure Barra; Antonia Neels; Stefan Janssen; Fanni Juranyi (2004). "Electronic and Molecular Structure of High-Spin d4 Complexes: Experimental and Theoretical Study of the [Cr(D2O)6]2+Cation in Tutton's Salts". Journal of the American Chemical Society. 126 (50): 16639–16652. doi:10.1021/ja046095c. ISSN 0002-7863. PMID 15600370. 
  24. ^ Dobe, Christopher; Hans-Peter Andres; Philip L.W. Tregenna-Piggott; Susanne Mossin; Høgni Weihe; Stefan Janssen (2002). "Variable temperature inelastic neutron scattering study of chromium(II) Tutton salt: manifestation of the 5E ⊗ e Jahn–Teller effect". Chemical Physics Letters. 362 (5–6): 387–396. Bibcode:2002CPL...362..387D. doi:10.1016/S0009-2614(02)01131-4. ISSN 0009-2614. 
  25. ^ a b c "materials database". Diakses tanggal 30 Desember 2023. 
  26. ^ Zhou, Dawei; R. W. Kreilick (1993). "Electron spin exchange in single crystals of copper Tutton's salt ( )". The Journal of Physical Chemistry. 97 (37): 9304–9310. doi:10.1021/j100139a009. ISSN 0022-3654. 
  27. ^ a b Ballirano, Paolo; Girolamo Belardi (2007). "Rietveld refinement of the Tutton's salt   from parallel-beam X-ray powder diffraction data". Acta Crystallographica Section E. 63 (2): i56–i58. doi:10.1107/S1600536807002656. ISSN 1600-5368. 
  28. ^ Ballirano, Paolo; Girolamo Belardi; Ferdinando Bosi (2007). "Redetermination of the Tutton's salt  ". Acta Crystallographica Section E. 63 (7): i164–i165. doi:10.1107/S1600536807029790. ISSN 1600-5368. 
  29. ^ Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H.. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. hlm. 14. Diakses tanggal 30 Desember 2023. 
  30. ^ a b Simmons, Charles J.; Michael A. Hitchman; Horst Stratemeier; Arthur J. Schultz (1993). "High-pressure, low-temperature, single-crystal neutron diffraction study of deuterated and hydrogenous ammonium hexaaquacopper(II) sulfate (Tutton's salt): a pressure-switchable Jahn-Teller distortion". Journal of the American Chemical Society. 115 (24): 11304–11311. doi:10.1021/ja00077a032. ISSN 0002-7863. 
  31. ^ a b c "976 Diammonium hexaquacopper(ii) sulfate ( ) (ICSD 62991)". openmopac. Diakses tanggal 30 Desember 2023. 
  32. ^ Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H.. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. hlm. 72. Diakses tanggal 30 Desember 2023. 
  33. ^ Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 8. National Bureau of Standards. hlm. 64. Diakses tanggal 30 Desember 2023. 
  34. ^ Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. hlm. 14. Diakses tanggal 30 Desember 2023. 
  35. ^ "Mohrite" (PDF). Mineral Data Publishing. Diakses tanggal 30 Desember 2023. 
  36. ^ Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 8. National Bureau of Standards. hlm. 87. Diakses tanggal 30 Desember 2023. 
  37. ^ Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 8. National Bureau of Standards. hlm. 54. Diakses tanggal 30 Desember 2023. 
  38. ^ Somasekharam, V.; Y.P. Reddy (1985). "Spectroscopic studies on vanadyl ion in rubidium magnesium sulphate hexahydrate". Solid State Communications. 53 (8): 695–697. Bibcode:1985SSCom..53..695S. doi:10.1016/0038-1098(85)90380-1. ISSN 0038-1098. 
  39. ^ Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1970). Standard X-ray Diffraction Powder Patterns: Section 8. Data for 81 Substances. Washington D.C: UNT Digital Library. hlm. 70. Diakses tanggal 30 Desember 2023. 
  40. ^ Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. hlm. 18. Diakses tanggal 30 Desember 2023. 
  41. ^ Chand, Prem; R. Murali Krishna; J. Lakshmana Rao; S. V. J. Lakshman (1993). "EPR and optical studies of vanadyl complexes in two host-crystals of Tutton salts of thallium". Radiation Effects and Defects in Solids. 127 (2): 245–254. Bibcode:1993REDS..127..245C. doi:10.1080/10420159308220322. ISSN 1042-0150. 
  42. ^ "ICSD for WWW". Diakses tanggal 30 Desember 2023. 
  43. ^ Euler, H.; B. Barbier; S. Klumpp; A. Kirfel (2000). "Crystal structure of Tutton's salts,  ,  " (PDF). Zeitschrift für Kristallographie. New Crystal Structures. 215 (4): 473–476. doi:10.1515/ncrs-2000-0408 . ISSN 1433-7266. Diakses tanggal 30 Desember 2023. 
  44. ^ a b Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. hlm. 20. Diakses tanggal 30 Desember 2023. 
  45. ^ Montgomery, H.; R. V. Chastain; E. C. Lingafelter (1966). "The crystal structure of Tutton's salts. V. Manganese ammonium sulfate hexahydrate". Acta Crystallographica. 20 (6): 731–733. doi:10.1107/S0365110X66001762 . ISSN 0365-110X. 
  46. ^ Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1970). Standard X-ray Diffraction Powder Patterns: Section 8. Data for 81 Substances (PDF). Washington D.C. hlm. 12. Diakses tanggal 30 Desember 2023. 
  47. ^ Nalbandyan, V. B. (29 Februari 2012). "Thallium manganese sulfate hexahydrate, a missing Tutton's salt, and a brief review of the entire family". Powder Diffraction. 23 (1): 52–55. Bibcode:2008PDiff..23...52N. doi:10.1154/1.2840634. 
  48. ^ a b c Wang, Xia; Xinxin Zhuang; Genbo Su; Youping He (2008). "A new ultraviolet filter:   (RNSH) single crystal" (PDF). Optical Materials. 31 (2): 233–236. Bibcode:2008OptMa..31..233W. doi:10.1016/j.optmat.2008.03.020. ISSN 0925-3467. 
  49. ^ Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. hlm. 23. Diakses tanggal 30 Desember 2023. 
  50. ^ Montgomery, H.; E.C. Lingafelter (10 November 1964). "The crystal structure of Tutton's salts. II. Magnesium ammonium sulfate hexahydrate and nickel ammonium sulfate hexahydrate". Acta Crystallographica. International Union of Crystallography. 17 (11): 1478. doi:10.1107/s0365110x6400367x . 
  51. ^ Morris, Marlene C; McMurdie, Howard F.; Evans, Eloise H.; Paretzkin, Boris; Hubbard, Camden R.; Carmel, Simon J. (1980). "Standard X-ray Diffraction Powder Patterns: Section 17. Data for 54 Substances". Final Report National Bureau of Standards. Bibcode:1980nbs..reptR....M. 
  52. ^ "The Monoclinic Double Sulphates Containing Ammonium. Completion of the Double Sulphate Series". Januari 1916. 
  53. ^ Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. hlm. 78. Diakses tanggal 30 Desember 2023. 
  54. ^ a b Bernhard, Paul; Ludi, Andreas (March 1984). "Infrared and Raman spectra of the hexaaquaruthenium ions: normal-coordinate analysis for   and  ". Inorganic Chemistry. 23 (7): 870–872. doi:10.1021/ic00175a015. 
  55. ^ Mido, M. Satake & Y.; Satake, M. (1 Januari 2010). Chemistry Of Transition Elements. Discovery Publishing House. hlm. 43. ISBN 9788171412433. Diakses tanggal 30 Desember 2023. 
  56. ^ Montgomery, H.; B. Morosin; J. J. Natt; A. M. Witkowska; E. C. Lingafelter (1967). "The crystal structure of Tutton's salts. VI. Vanadium(II), iron(II) and cobalt(II) ammonium sulfate hexahydrates". Acta Crystallographica. 22 (6): 775–780. doi:10.1107/S0365110X67001550 . ISSN 0365-110X. 
  57. ^ Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. hlm. 43. Diakses tanggal 30 Desember 2023. 
  58. ^ Lim, Ae Ran; Kim, Sun Ha (23 Juli 2015). "Structural and thermodynamic properties of Tutton salt K2Zn(SO4)2·6H2O". Journal of Thermal Analysis and Calorimetry. 123 (1): 371–376. doi:10.1007/s10973-015-4865-9. 
  59. ^ Somasekharam, V; Prasad, P Siva; Ramesh, K; Reddy, Y P (1 Februari 1986). "Electronic Spectra of VO and Cu Ions in Rubidium Zinc Sulphate Hexahydrate". Physica Scripta. 33 (2): 169–172. Bibcode:1986PhyS...33..169S. doi:10.1088/0031-8949/33/2/014. 
  60. ^ Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. hlm. 55. Diakses tanggal 30 Desember 2023. 
  61. ^ Lakshmana Rao, J.; K. Purandar (1980). "Absorption spectrum of   in zinc cesium sulphate hexahydrate". Solid State Communications. 33 (3): 363–364. Bibcode:1980SSCom..33..363L. doi:10.1016/0038-1098(80)91171-0. ISSN 0038-1098. 
  62. ^ Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. hlm. 25. Diakses tanggal 30 Desember 2023. 
  63. ^ Voigt, W.; S. Göring (1994). "Melting of Tutton's salts studied by DSC". Thermochimica Acta. 237 (1): 13–26. doi:10.1016/0040-6031(94)85179-4. ISSN 0040-6031. 
  64. ^ Chand, Prem; Krishna, R. Murali; Rao, J. Lakshmana; Lakshman, S. V. J. (November 1993). "EPR and optical studies of vanadyl complexes in two host-crystals of Tutton salts of thallium". Radiation Effects and Defects in Solids. 127 (2): 245–254. Bibcode:1993REDS..127..245C. doi:10.1080/10420159308220322. 
  65. ^ Yankova, Rumyana; Genieva, Svetlana (June 2019). "Crystal structure and IR investigation of double salt Cs2Ni(SeO4)2·4H2O". Chemical Data Collections. 21: 100234. doi:10.1016/j.cdc.2019.100234. 
  66. ^ Yankova, Rumyana (Mei 2020). "Hirshfeld surface analysis and ir investigation for the rubidium hexaaquacopper(II) selenate". Chemical Data Collections (dalam bahasa Inggris). 27: 100379. doi:10.1016/j.cdc.2020.100379. 
  67. ^ Rekik, Walid; Naïli, Houcine; Mhiri, Tahar; Bataille, Thierry (April 2005). "Piperazinediium hexaaquazinc(II) bis(sulfate): A structural analogue of Tutton's salts". Acta Crystallographica Section E. 61 (4): m629. doi:10.1107/s1600536805005982. 
  68. ^ Colaneri, Michael J.; Teat, Simon J.; Vitali, Jacqueline (20 Februari 2020). "Electron Paramagnetic Resonance Characteristics and Crystal Structure of a Tutton Salt Analogue: Copper-Doped Cadmium Creatininium Sulfate". The Journal of Physical Chemistry A. 124 (11): 2242–2252. Bibcode:2020JPCA..124.2242C. doi:10.1021/acs.jpca.0c00004. OSTI 1777953. PMID 32078331.