Daftar bentuk matematika

Berikut ini adalah daftar dari beberapa bentuk matematis terdefinisi dengan baik .

Kurva rasional

sunting

Keluarga dengan derajat variabel

sunting

Kurva dari genus satu

sunting

Kurva dengan genus lebih dari satu

sunting

Keluarga kurva dengan genus variabel

sunting

Kurva transendental

sunting

Kurva yang dihasilkan oleh kurva lain

sunting

Kurva ruang

sunting

Permukaan dalam ruang 3 dimensi

sunting

Kuadrik

sunting

Permukaan bola semu

sunting

See the list of algebraic surfaces.

Permukaan lainnya

sunting

Fraktal

sunting

Fraktal acak

sunting

Politop beraturan

sunting

Berikut adalah tabel yang memperlihatkan ringkasan mengenai politop beraturan yang dihitung dengan dimensi.

Dimensi Cembung Takcembung Teselasi cembung Euklides Teselasi cembung hiperbolik Teselasi takcembung hiperbolik Teselasi Hiperbolik dengan sel takhingga
dan/atau gambar verteks
Politop abstrak
1 1 ruas garis 0 1 0 0 0 1
2 polygons star polygons 1 1 0 0
3 5 Platonic solids 4 Kepler–Poinsot solids 3 tilings
4 6 convex polychora 10 Schläfli–Hess polychora 1 honeycomb 4 0 11
5 3 convex 5-polytopes 0 3 tetracombs 5 4 2
6 3 convex 6-polytopes 0 1 pentacombs 0 0 5
7+ 3 0 1 0 0 0

There are no nonconvex Euclidean regular tessellations in any number of dimensions.

Polytope elements

sunting

The elements of a polytope can be considered according to either their own dimensionality or how many dimensions "down" they are from the body.

  • Puncak, sebuah elemen dimensi 0
  • Sisi, sebuah elemen dimensi 1
  • Wajah, sebuah elemen dimensi 2
  • Sel, sebuah elemen dimensi 3
  • Hipersel, sebuah elemen dimensi 4
  • Facet, sebuah (n-1)
  • Ridge, sebuah elemen dimensi (n-2)
  • Peak, sebuah elemen dimensi (n-3)

For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak.

  • Vertex figure: not itself an element of a polytope, but a diagram showing how the elements meet.

Teselasi

sunting

The classical convex polytopes may be considered tessellations, or tilings, of spherical space. Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.

Dimensi nol

sunting

Politop regular satu dimensi

sunting

Terdapat hanya satu politop dalam 1 dimensi, yang batasnya terdapat dua titik akhir ruas garis, diwakili oleh simbol Schläfli kosong {}.

Politop regular dua dimensi

sunting

Cembung

sunting
Merosot (bola)
sunting

Takcembung

sunting

Teselasi

sunting

Politop regular tiga dimensi

sunting

Cembung

sunting

Degenerate (spherical)

sunting

Takcembung

sunting

Tessellations

sunting
Euclidean tilings
sunting
Hyperbolic tilings
sunting
Hyperbolic star-tilings
sunting

Four-dimensional regular polytopes

sunting

Degenerate (spherical)

sunting

Non-convex

sunting

Tessellations of Euclidean 3-space

sunting

Degenerate tessellations of Euclidean 3-space

sunting

Tessellations of hyperbolic 3-space

sunting

Five-dimensional regular polytopes and higher

sunting
Simplex Hypercube Cross-polytope
5-simplex 5-cube 5-orthoplex
6-simplex 6-cube 6-orthoplex
7-simplex 7-cube 7-orthoplex
8-simplex 8-cube 8-orthoplex
9-simplex 9-cube 9-orthoplex
10-simplex 10-cube 10-orthoplex
11-simplex 11-cube 11-orthoplex

Tessellations of Euclidean 4-space

sunting

Tessellations of Euclidean 5-space and higher

sunting

Tessellations of hyperbolic 4-space

sunting

Tessellations of hyperbolic 5-space

sunting

Apeirotopes

sunting

Abstract polytopes

sunting

Non-regular polytopes

sunting

2D with 1D surface

sunting

Polygons named for their number of sides

Tilings

sunting

Uniform polyhedra

sunting

Duals of uniform polyhedra

sunting

Johnson solids

sunting

Other nonuniform polyhedra

sunting

Spherical polyhedra

sunting

Honeycombs

sunting
Convex uniform honeycomb
Dual uniform honeycomb
Others
Convex uniform honeycombs in hyperbolic space

Regular and uniform compound polyhedra

sunting
Polyhedral compound and Uniform polyhedron compound
Convex regular 4-polytope
Abstract regular polytope
Schläfli–Hess 4-polytope (Regular star 4-polytope)
Uniform 4-polytope
Prismatic uniform polychoron

Honeycombs

sunting

5D with 4D surfaces

sunting
Five-dimensional space, 5-polytope and uniform 5-polytope
Prismatic uniform 5-polytope
For each polytope of dimension n, there is a prism of dimension n+1.[butuh rujukan]

Honeycombs

sunting

Six dimensions

sunting
Six-dimensional space, 6-polytope and uniform 6-polytope

Honeycombs

sunting

Seven dimensions

sunting
Seven-dimensional space, uniform 7-polytope

Honeycombs

sunting

Eight dimension

sunting
Eight-dimensional space, uniform 8-polytope

Honeycombs

sunting

Nine dimensions

sunting
9-polytope

Hyperbolic honeycombs

sunting

Ten dimensions

sunting
10-polytope

Dimensional families

sunting
Regular polytope and List of regular polytopes
Uniform polytope
Honeycombs

Geometri

sunting

Geometry and other areas of mathematics

sunting
 
Ford circles

Glyphs and symbols

sunting

Referensi

sunting
  1. ^ "Courbe a Réaction Constante, Quintique De L'Hospital" [Kurva Reaksi Konstan, Quintic l'Hospital]. 
  2. ^ https://web.archive.org/web/20041114002246/http://www.mathcurve.com/courbes2d/isochron/isochrone%20leibniz. Diarsipkan dari versi asli tanggal 14 November 2004.  Tidak memiliki atau tanpa |title= (bantuan)
  3. ^ https://web.archive.org/web/20041113201905/http://www.mathcurve.com/courbes2d/isochron/isochrone%20varignon. Diarsipkan dari versi asli tanggal 13 November 2004.  Tidak memiliki atau tanpa |title= (bantuan)
  4. ^ Ferreol, Robert. "Spirale de Galilée". www.mathcurve.com. 
  5. ^ Weisstein, Eric W. "Seiffert's Spherical Spiral". mathworld.wolfram.com. 
  6. ^ Weisstein, Eric W. "Slinky". mathworld.wolfram.com. 
  7. ^ "Monkeys tree fractal curve". Diarsipkan dari versi asli tanggal 21 September 2002. 
  8. ^ WOLFRAM Demonstrations Project http://demonstrations.wolfram.com/SelfAvoidingRandomWalks/#more. Diakses tanggal 14 June 2019.  Tidak memiliki atau tanpa |title= (bantuan)
  9. ^ Weisstein, Eric W. "Hedgehog". mathworld.wolfram.com. 
  10. ^ "Courbe De Ribaucour" [Ribaucour curve]. mathworld.wolfram.com.