Berkas:Prime number theorem ratio convergence.svg

Ukuran asli (Berkas SVG, secara nominal 250 × 160 piksel, besar berkas: 87 KB)

Berkas ini berasal dari Wikimedia Commons dan mungkin digunakan oleh proyek-proyek lain. Deskripsi dari halaman deskripsinya ditunjukkan di bawah ini.

Ringkasan

Deskripsi
English: A plot showing how two estimates described by the prime number theorem, and converge asymptotically towards , the number of primes less than x. The x axis is and is logarithmic (labelled in evenly spaced powers of 10), going up to 1024, the largest for which is currently known. The former estimate converges extremely slowly, while the latter has visually converged on this plot by 108. Source used to generate this chart is shown below.
Tanggal
Sumber Karya sendiri
Pembuat Dcoetzee
SVG genesis
InfoField
 
The SVG code is valid.
 
Gambar vektor ini dibuat menggunakan Mathematica
 
 This chart uses embedded text that can be easily translated using a text editor.

Lisensi

Saya, pemilik hak cipta dari karya ini, dengan ini menerbitkan berkas ini di bawah ketentuan berikut:
Creative Commons CC-Zero Berkas ini dilepaskan di bawah CC0 1.0 Dedikasi Domain Publik Universal Creative Commons.
Orang yang mengaitkan suatu karya dengan dokumen ini telah mendedikasikan karyanya sebagai domain publik dengan mengabaikan semua hak ciptanya di seluruh dunia menurut hukum hak cipta, termasuk semua hak yang terkait dan berhubungan, sejauh yang diakui hukum. Anda dapat menyalin, menyebarkan, dan mempertunjukkan karya, bahkan untuk tujuan komersial, tanpa meminta izin.

Source

All source released under CC0 waiver.

Mathematica source to generate graph (which was then saved as SVG from Mathematica):

(* Sample both functions at 600 logarithmically spaced points between \
1 and 2^40 *)
base = N[E^(24 Log[10]/600)];
ratios = Table[{Round[base^x], 
    N[PrimePi[Round[base^x]]/(base^x/(x*Log[base]))]}, {x, 1, 
    Floor[40/Log[2, base]]}];
ratiosli = 
  Table[{Round[base^x], 
    N[PrimePi[
       Round[base^x]]/(LogIntegral[base^x] - LogIntegral[2])]}, {x, 
    Ceiling[Log[base, 2]], Floor[40/Log[2, base]]}];
(* Supplement with larger known PrimePi values that are too large for \
Mathematica to compute *)
LargePiPrime = {{10^13, 346065536839}, {10^14, 3204941750802}, {10^15,
     29844570422669}, {10^16, 279238341033925}, {10^17, 
    2623557157654233}, {10^18, 24739954287740860}, {10^19, 
    234057667276344607}, {10^20, 2220819602560918840}, {10^21, 
    21127269486018731928}, {10^22, 201467286689315906290}, {10^23, 
    1925320391606803968923}, {10^24, 18435599767349200867866}};
ratios2 = 
  Join[ratios, 
   Map[{#[[1]], N[#[[2]]]/(#[[1]]/(Log[#[[1]]]))} &, LargePiPrime]];
ratiosli2 = 
  Join[ratiosli, 
   Map[{#[[1]], N[#[[2]]]/(LogIntegral[#[[1]]] - LogIntegral[2])} &, 
    LargePiPrime]];
(* Plot with log x axis, together with the horizontal line y=1 *)
Show[LogLinearPlot[1, {x, 1, 10^24}, PlotRange -> {0.8, 1.25}], 
 ListLogLinearPlot[{ratios2, ratiosli2}, Joined -> True], 
 LabelStyle -> FontSize -> 14]

LaTeX source for labels:

$$ \left.{\pi(x)}\middle/{\frac{x}{\ln x}}\right. $$
$$ \left.{\pi(x)}\middle/{\int_2^x \frac{1}{\ln t} \mathrm{d}t}\right. $$

These were converted to SVG with [1] and then the graph was embedded into the resulting document in Inkscape. Axis fonts were also converted to Liberation Serif in Inkscape.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

menggambarkan

21 Maret 2013

Riwayat berkas

Klik pada tanggal/waktu untuk melihat berkas ini pada saat tersebut.

Tanggal/WaktuMiniaturDimensiPenggunaKomentar
terkini21 Maret 2013 13.07Miniatur versi sejak 21 Maret 2013 13.07250 × 160 (87 KB)DcoetzeeChange n to x to match article
21 Maret 2013 12.30Miniatur versi sejak 21 Maret 2013 12.30250 × 160 (86 KB)DcoetzeeConvert formula from graphics to pure SVG using http://www.tlhiv.org/ltxpreview/
21 Maret 2013 12.23Miniatur versi sejak 21 Maret 2013 12.23250 × 160 (130 KB)Dcoetzee{{Information |Description ={{en|1=A plot showing how two estimates described by the prime number theorem, <math>\frac{n}{\ln n}</math> and <math>\int_2^n \frac{1}{\ln t} \mathrm{d}t = Li(n) = li(n) - li(2)</math> converge asymptotically towards <ma...

2 halaman berikut menggunakan berkas ini:

Penggunaan berkas global

Wiki lain berikut menggunakan berkas ini:

Metadata