Berkas:Line integral of scalar field.gif

Line_integral_of_scalar_field.gif (400 × 300 piksel, ukuran berkas: 580 KB, tipe MIME: image/gif, melingkar, 61 frame, 39 d)

Berkas ini berasal dari Wikimedia Commons dan mungkin digunakan oleh proyek-proyek lain. Deskripsi dari halaman deskripsinya ditunjukkan di bawah ini.

Ringkasan

Deskripsi
English: Line integral of a scalar field, f. The area under the curve C, traced on the surface defined by z = f(x,y), is the value of the integral. See full description.
فارسی: انتگرال خطی یک میدان اسکالر f. مقدار انتگرال مساحت زیر منحنی C تعریف شده توسط سطح (z = f(x,y است.
Français : L′intégrale curviligne d′un champ scalaire, f. L′aire sous la courbe C, tracée sur la surface définie par z = f(x,y), est la valeur de l'intégrale.
Italiano: Integrale di linea di un campo scalare, f. Il valore dell'integrale è pari all'area sotto la curva C, tracciata sulla superficie definita da z = f(x,y).
Русский: Иллюстрация криволинейного интеграла первого рода на скалярном поле.
Tanggal
Sumber Karya sendiri
Pembuat Lucas Vieira
Izin
(Menggunakan kembali berkas ini)
Public domain Saya, pemegang hak cipta karya ini, merilis karya ini ke domain umum. Lisensi ini berlaku di seluruh dunia.
Di sejumlah negara, tindakan ini tidak memungkinkan secara sah; bila seperti itu:
Saya memberikan siapa pun hak untuk menggunakan karya ini untuk tujuan apa pun, tanpa persyaratan apa pun, kecuali yang ditetapkan oleh hukum.
Versi lainnya

Penilaian

Citra of the year
Citra of the year
Featured citra

Wikimedia CommonsWikipedia

Berkas ini telah dimasukkan ke finalis dalam Gambar Tahun Ini 2012.
Berkas ini merupakan gambar pilihan di Wikimedia Commons (Gambar pilihan) dan telah dianggap sebagai salah satu gambar terbaik. Lihat pencalonannya di sini.

 Berkas ini merupakan gambar pilihan di Wikipedia bahasa Inggris (Featured pictures) dan telah dianggap sebagai salah satu gambar terbaik. Lihat pencalonannya di sini.
 Berkas ini merupakan gambar pilihan di Wikipedia bahasa Persia (نگاره‌های برگزیده) dan telah dianggap sebagai salah satu gambar terbaik. Lihat pencalonannya di sini.

Jika Anda mempunyai gambar dengan kualitas yang serupa dan dapat diterbitkan di bawah lisensi hak cipta yang sesuai, pastikan Anda menggunggah, menandai, dan mengusulkan gambar tersebut.

Full description (English)

A scalar field has a value associated to each point in space. Examples of scalar fields are height, temperature or pressure maps. In a two-dimensional field, the value at each point can be thought of as a height of a surface embedded in three dimensions. The line integral of a curve along this scalar field is equivalent to the area under a curve traced over the surface defined by the field.

In this animation, all these processes are represented step-by-step, directly linking the concept of the line integral over a scalar field to the representation of integrals familiar to students, as the area under a simpler curve. A breakdown of the steps:

  1. The color-coded scalar field f and a curve C are shown. The curve C starts at a and ends at b
  2. The field is rotated in 3D to illustrate how the scalar field describes a surface. The curve C, in blue, is now shown along this surface. This shows how at each point in the curve, a scalar value (the height) can be associated.
  3. The curve is projected onto the plane XY (in gray), giving us the red curve, which is exactly the curve C as seen from above in the beginning. This is red curve is the curve in which the line integral is performed. The distances from the projected curve (red) to the curve along the surface (blue) describes a "curtain" surface (in blue).
  4. The graph is rotated to face the curve from a better angle
  5. The projected curve is rectified (made straight), and the same transformation follows on the blue curve, along the surface. This shows how the line integral is applied to the arc length of the given curve
  6. The graph is rotated so we view the blue surface defined by both curves face on
  7. This final view illustrates the line integral as the familiar integral of a function, whose value is the "signed area" between the X axis (the red curve, now a straight line) and the blue curve (which gives the value of the scalar field at each point). Thus, we conclude that the two integrals are the same, illustrating the concept of a line integral on a scalar field in an intuitive way.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

menggambarkan

24 Juli 2012

image/gif

Riwayat berkas

Klik pada tanggal/waktu untuk melihat berkas ini pada saat tersebut.

Tanggal/WaktuMiniaturDimensiPenggunaKomentar
terkini14 Agustus 2012 16.43Miniatur versi sejak 14 Agustus 2012 16.43400 × 300 (580 KB)LucasVBUnoptimized. Sticking with local palettes for better color resolution per frame. Added bands of color to the field instead of a smooth gradient. Overall, it should look sharper, though the file will be bigger. Worth it, I say!
25 Juli 2012 12.24Miniatur versi sejak 25 Juli 2012 12.24400 × 300 (328 KB)LucasVBAlternative illustration of the "straightening" of the curve. It should convey the concept better than the previous one, which may be interpreted as a mere projection. Also, changed to pattern dithering. Seems to look better, and file is smaller even t...
24 Juli 2012 16.59Miniatur versi sejak 24 Juli 2012 16.59400 × 300 (337 KB)LucasVB{{Information |Description= |Source={{own}} |Date=2012-07-24 |Author= Kieff |Permission={{PD-self}} |other_versions= }}

Penggunaan berkas global

Wiki lain berikut menggunakan berkas ini:

Lihat lebih banyak penggunaan global dari berkas ini.